Beispiel #1
0
def hooi(X, rank, **kwargs):
    """
    Compute Tucker decomposition of a tensor using Higher-Order Orthogonal
    Iterations.

    Parameters
    ----------
    X : tensor_mixin
        The tensor to be decomposed
    rank : array_like
        The rank of the decomposition for each mode of the tensor.
        The length of ``rank`` must match the number of modes of ``X``.
    init : {'random', 'nvecs'}, optional
        The initialization method to use.
            - random : Factor matrices are initialized randomly.
            - nvecs : Factor matrices are initialzed via HOSVD.
        default : 'nvecs'

    Examples
    --------
    Create dense tensor

    >>> T = np.zeros((3, 4, 2))
    >>> T[:, :, 0] = [[ 1,  4,  7, 10], [ 2,  5,  8, 11], [3,  6,  9, 12]]
    >>> T[:, :, 1] = [[13, 16, 19, 22], [14, 17, 20, 23], [15, 18, 21, 24]]
    >>> T = dtensor(T)

    Compute Tucker decomposition of ``T`` with n-rank [2, 3, 1] via higher-order
    orthogonal iterations

    >>> Y = hooi(T, [2, 3, 1], init='nvecs')

    Shape of the core tensor matches n-rank of the decomposition.

    >>> Y['core'].shape
    (2, 3, 1)
    >>> Y['U'][1].shape
    (3, 2)

    References
    ----------
    .. [1] L. De Lathauwer, B. De Moor, J. Vandewalle: On the best rank-1 and
           rank-(R_1, R_2, \ldots, R_N) approximation of higher order tensors;
           IEEE Trans. Signal Process. 49 (2001), pp. 2262-2271
    """
    # init options
    ainit = kwargs.pop('init', __DEF_INIT)
    maxIter = kwargs.pop('maxIter', __DEF_MAXITER)
    conv = kwargs.pop('conv', __DEF_CONV)
    dtype = kwargs.pop('dtype', X.dtype)
    if not len(kwargs) == 0:
        raise ValueError('Unknown keywords (%s)' % (kwargs.keys()))

    ndims = X.ndim
    if isNumberType(rank):
        rank = rank * ones(ndims)

    normX = norm(X)

    U = __init(ainit, X, ndims, rank, dtype)
    fit = 0
    exectimes = []
    for itr in xrange(maxIter):
        tic = time.clock()
        fitold = fit

        for n in range(ndims):
            Utilde = ttm(X, U, n, transp=True, without=True)
            U[n] = nvecs(Utilde, n, rank[n])

        # compute core tensor to get fit
        core = ttm(Utilde, U, n, transp=True)

        # since factors are orthonormal, compute fit on core tensor
        normresidual = sqrt(normX ** 2 - norm(core) ** 2)

        # fraction explained by model
        fit = 1 - (normresidual / normX)
        fitchange = abs(fitold - fit)
        exectimes.append(time.clock() - tic)

        _log.debug(
            '[%3d] fit: %.5f | delta: %7.1e | secs: %.5f'
            % (itr, fit, fitchange, exectimes[-1])
        )
        if itr > 1 and fitchange < conv:
            break
    return core, U
Beispiel #2
0
def als(X, rank, dtype=np.float, **kwargs):
    """
    Alternating least-sqaures algorithm to compute the CP decomposition.

    Parameters
    ----------
    X : tensor_mixin
        The tensor to be decomposed.
    rank : int
        Tensor rank of the decomposition.
    init : {'random', 'nvecs'}, optional
        The initialization method to use.
            - random : Factor matrices are initialized randomly.
            - nvecs : Factor matrices are initialzed via HOSVD.
        (default 'nvecs')
    max_iter : int, optional
        Maximium number of iterations of the ALS algorithm.
        (default 500)
    fit_method : {'full', None}
        The method to compute the fit of the factorization
            - 'full' : Compute least-squares fit of the dense approximation of.
                       X and X.
            - None : Do not compute the fit of the factorization, but iterate
                     until ``max_iter`` (Useful for large-scale tensors).
        (default 'full')
    conv : float
        Convergence tolerance on difference of fit between iterations
        (default 1e-5)

    Returns
    -------
    P : ktensor
        Rank ``rank`` factorization of X. ``P.U[i]`` corresponds to the factor
        matrix for the i-th mode. ``P.lambda[i]`` corresponds to the weight
        of the i-th mode.
    fit : float
        Fit of the factorization compared to ``X``
    itr : int
        Number of iterations that were needed until convergence
    exectimes : ndarray of floats
        Time needed for each single iteration

    Examples
    --------
    Create random dense tensor

    >>> from sktensor import dtensor
    >>> U = [np.random.rand(i,3) for i in (20, 10, 14)]
    >>> T = dtensor(ktensor(U).toarray())

    Compute rank-3 CP decomposition of ``T`` with ALS

    >>> P, fit, itr, _ = als(T, 3)

    Result is a decomposed tensor stored as a Kruskal operator

    >>> type(P)
    <class 'sktensor.ktensor.ktensor'>

    Factorization should be close to original data

    >>> np.allclose(T, P.totensor())
    True

    References
    ----------
    .. [1] Kolda, T. G. & Bader, B. W.
           Tensor Decompositions and Applications.
           SIAM Rev. 51, 455–500 (2009).
    .. [2] Harshman, R. A.
           Foundations of the PARAFAC procedure: models and conditions for an 'explanatory' multimodal factor analysis.
           UCLA Working Papers in Phonetics 16, (1970).
    .. [3] Carroll, J. D.,  Chang, J. J.
           Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition.
           Psychometrika 35, 283–319 (1970).
    """
    N = len(X.shape)
    normX = norm(X)

    # init options
    ainit = kwargs.pop('init', __DEF_INIT)
    maxiter = kwargs.pop('maxIter', __DEF_MAXITER)
    fit_method = kwargs.pop('fit_method', __DEF_FIT_METHOD)
    conv = kwargs.pop('conv', __DEF_CONV)
    if not len(kwargs) == 0:
        raise ValueError('Unknown keywords (%s)' % (kwargs.keys()))

    U = __init(ainit, X, N, rank, dtype)
    fit = 0
    exectimes = []
    for itr in xrange(maxiter):
        tic = time.clock()
        fitold = fit

        for n in range(N):
            Unew = X.uttkrp(U, n)
            Y = ones((rank, rank), dtype=dtype)
            for i in (range(n) + range(n + 1, N)):
                Y = Y * dot(U[i].T, U[i])
            Unew = Unew.dot(pinv(Y))
            # Normalize
            if itr == 0:
                lmbda = sqrt((Unew ** 2).sum(axis=0))
            else:
                lmbda = Unew.max(axis=0)
                lmbda[lmbda < 1] = 1
            U[n] = Unew / lmbda

        P = ktensor(U, lmbda)
        if fit_method == 'full':
            normresidual = normX ** 2 + P.norm() ** 2 - 2 * P.innerprod(X)
            fit = 1 - (normresidual / normX ** 2)
        else:
            fit = itr
        fitchange = abs(fitold - fit)
        exectimes.append(time.clock() - tic)
        _log.debug(
            '[%3d] fit: %.5f | delta: %7.1e | secs: %.5f' %
            (itr, fit, fitchange, exectimes[-1])
        )
        if itr > 0 and fitchange < conv:
            break

    return P, fit, itr, array(exectimes)
Beispiel #3
0
def als(X, rank, **kwargs):
    """
    Alternating least-sqaures algorithm to compute the CP decomposition.

    Parameters
    ----------
    X : tensor_mixin
        The tensor to be decomposed.
    rank : int
        Tensor rank of the decomposition.
    init : {'random', 'nvecs'}, optional
        The initialization method to use.
            - random : Factor matrices are initialized randomly.
            - nvecs : Factor matrices are initialzed via HOSVD.
        (default 'nvecs')
    max_iter : int, optional
        Maximium number of iterations of the ALS algorithm.
        (default 500)
    fit_method : {'full', None}
        The method to compute the fit of the factorization
            - 'full' : Compute least-squares fit of the dense approximation of.
                       X and X.
            - None : Do not compute the fit of the factorization, but iterate
                     until ``max_iter`` (Useful for large-scale tensors).
        (default 'full')
    conv : float
        Convergence tolerance on difference of fit between iterations
        (default 1e-5)

    Returns
    -------
    P : ktensor
        Rank ``rank`` factorization of X. ``P.U[i]`` corresponds to the factor
        matrix for the i-th mode. ``P.lambda[i]`` corresponds to the weight
        of the i-th mode.
    fit : float
        Fit of the factorization compared to ``X``
    itr : int
        Number of iterations that were needed until convergence
    exectimes : ndarray of floats
        Time needed for each single iteration

    Examples
    --------
    Create random dense tensor

    >>> from sktensor import dtensor, ktensor
    >>> U = [np.random.rand(i,3) for i in (20, 10, 14)]
    >>> T = dtensor(ktensor(U).toarray())

    Compute rank-3 CP decomposition of ``T`` with ALS

    >>> P, fit, itr, _ = als(T, 3)

    Result is a decomposed tensor stored as a Kruskal operator

    >>> type(P)
    <class 'sktensor.ktensor.ktensor'>

    Factorization should be close to original data

    >>> np.allclose(T, P.totensor())
    True

    References
    ----------
    .. [1] Kolda, T. G. & Bader, B. W.
           Tensor Decompositions and Applications.
           SIAM Rev. 51, 455–500 (2009).
    .. [2] Harshman, R. A.
           Foundations of the PARAFAC procedure: models and conditions for an 'explanatory' multimodal factor analysis.
           UCLA Working Papers in Phonetics 16, (1970).
    .. [3] Carroll, J. D.,  Chang, J. J.
           Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition.
           Psychometrika 35, 283–319 (1970).
    """

    # init options
    ainit = kwargs.pop('init', _DEF_INIT)
    maxiter = kwargs.pop('max_iter', _DEF_MAXITER)
    fit_method = kwargs.pop('fit_method', _DEF_FIT_METHOD)
    conv = kwargs.pop('conv', _DEF_CONV)
    dtype = kwargs.pop('dtype', _DEF_TYPE)
    if not len(kwargs) == 0:
        raise ValueError('Unknown keywords (%s)' % (kwargs.keys()))

    N = X.ndim
    normX = norm(X)

    U = _init(ainit, X, N, rank, dtype)
    fit = 0
    exectimes = []
    for itr in range(maxiter):
        tic = time.clock()
        fitold = fit

        for n in range(N):
            Unew = X.uttkrp(U, n)
            Y = ones((rank, rank), dtype=dtype)
            for i in (list(range(n)) + list(range(n + 1, N))):
                Y = Y * dot(U[i].T, U[i])
            Unew = Unew.dot(pinv(Y))
            # Normalize
            if itr == 0:
                lmbda = sqrt((Unew**2).sum(axis=0))
            else:
                lmbda = Unew.max(axis=0)
                lmbda[lmbda < 1] = 1
            U[n] = Unew / lmbda

        P = ktensor(U, lmbda)
        if fit_method == 'full':
            normresidual = normX**2 + P.norm()**2 - 2 * P.innerprod(X)
            fit = 1 - (normresidual / normX**2)
        else:
            fit = itr
        fitchange = abs(fitold - fit)
        exectimes.append(time.clock() - tic)
        _log.debug('[%3d] fit: %.5f | delta: %7.1e | secs: %.5f' %
                   (itr, fit, fitchange, exectimes[-1]))
        if itr > 0 and fitchange < conv:
            break

    return P, fit, itr, array(exectimes)