Beispiel #1
0
def showCortexImg(pV, nV):
    """Summary
    This function encapsulates the routine to generate rectified cortical views of 
    all opponent retinal ganglion cells
    Args:
        pV (vector): Positive rectified imagevector
        nV (vector): Negative rectified imagevector
    
    Returns:
        mergecort: Return a merged image of all cortical opponent cells as a numpy image array
    """
    # object arrays of the positive and negative images
    pos_cort_img = np.empty(8, dtype=object)
    neg_cort_img = np.empty(8, dtype=object)
    for t in range(8):
        # cortical mapping functions
        lpos, rpos = cortex.cort_img(pV[:, t, :], L, L_loc, R, R_loc,
                                     cort_size, G)
        lneg, rneg = cortex.cort_img(nV[:, t, :], L, L_loc, R, R_loc,
                                     cort_size, G)
        pos_cort_img[t] = np.concatenate((np.rot90(lpos), np.rot90(rpos, k=3)),
                                         axis=1)
        neg_cort_img[t] = np.concatenate((np.rot90(lneg), np.rot90(rneg, k=3)),
                                         axis=1)

# stack all images into a grid
    posRGcort = np.vstack((pos_cort_img[:4]))
    negRGcort = np.vstack((neg_cort_img[:4]))
    posYBcort = np.vstack((pos_cort_img[4:]))
    negYBcort = np.vstack((neg_cort_img[4:]))
    mergecort = np.concatenate((posRGcort, negRGcort, posYBcort, negYBcort),
                               axis=1)
    return mergecort
Beispiel #2
0
def showNonOpponency(C, theta):
    """Summary
    This function encapsulates the routine to generate backprojected and cortical views for 
    the magnocellular pathway retinal ganglion cells
    Args:
        C (vector): The sharp retina is passed to the function
        theta (float): A threshold value is passed to the function
    
    Returns:
        merged: Return a merged image of the backprojected view as a numpy image array
        mergecort: Return a merged image of the cortical view as a numpy image array
    """
    GI = retina.gauss_norm_img(x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               imsize=imgsize,
                               rgb=False)
    # Sample using the other recepetive field, note there is no temporal response with still images
    S = retina.sample(img, x, y, dcoeff[i], dloc[i], rgb=True)
    #backproject the imagevectors
    ncentreV, nsurrV = rgc.nonopponency(C, S, theta)
    ninverse = retina.inverse(ncentreV,
                              x,
                              y,
                              dcoeff[i],
                              dloc[i],
                              GI,
                              imsize=imgsize,
                              rgb=True)
    ninv_crop = retina.crop(ninverse, x, y, dloc[i])
    ninverse2 = retina.inverse(nsurrV,
                               x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               GI,
                               imsize=imgsize,
                               rgb=True)
    ninv_crop2 = retina.crop(ninverse2, x, y, dloc[i])
    # place descriptive text onto generated images
    cv2.putText(ninv_crop, "R+G + ", (xx, yy), font, 1, (255, 255, 255), 2)
    cv2.putText(ninv_crop2, "R+G - ", (xx, yy), font, 1, (255, 255, 255), 2)
    merged = np.concatenate((ninv_crop, ninv_crop2), axis=1)

    # create cortical maps of the imagevectors
    lposnon, rposnon = cortex.cort_img(ncentreV, L, L_loc, R, R_loc, cort_size,
                                       G)
    lnegnon, rnegnon = cortex.cort_img(nsurrV, L, L_loc, R, R_loc, cort_size,
                                       G)
    pos_cort_img = np.concatenate((np.rot90(lposnon), np.rot90(rposnon, k=3)),
                                  axis=1)
    neg_cort_img = np.concatenate((np.rot90(lnegnon), np.rot90(rnegnon, k=3)),
                                  axis=1)
    mergecort = np.concatenate((pos_cort_img, neg_cort_img), axis=1)
    return merged, mergecort
def showNonOpponency(C, theta):
    """Summary
    This function encapsulates the routine to generate backprojected and cortical views for 
    the magnocellular pathway retinal ganglion cells
    Args:
        C (vector): The sharp retina is passed to the function
        theta (float): A threshold value is passed to the function
    
    Returns:
        merged: Return a merged image of the backprojected view as a numpy image array
        mergecort: Return a merged image of the cortical view as a numpy image array
    """
    # Sample using the other recepetive field, but with a temporally different image, lateimg
    S = retina.sample(lateimg, x, y, dcoeff[i], dloc[i], rgb=True)

    ncentreV, nsurrV = rgc.nonopponency(C, S, theta)
    ninverse = retina.inverse(ncentreV,
                              x,
                              y,
                              dcoeff[i],
                              dloc[i],
                              GI,
                              imsize=imgsize,
                              rgb=False)
    ninv_crop = retina.crop(ninverse, x, y, dloc[i])
    ninverse2 = retina.inverse(nsurrV,
                               x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               GI,
                               imsize=imgsize,
                               rgb=False)
    ninv_crop2 = retina.crop(ninverse2, x, y, dloc[i])
    merged = np.concatenate((ninv_crop, ninv_crop2), axis=1)

    lposnon, rposnon = cortex.cort_img(ncentreV, L, L_loc, R, R_loc, cort_size,
                                       G)
    lnegnon, rnegnon = cortex.cort_img(nsurrV, L, L_loc, R, R_loc, cort_size,
                                       G)
    pos_cort_img = np.concatenate((np.rot90(lposnon), np.rot90(rposnon, k=3)),
                                  axis=1)
    neg_cort_img = np.concatenate((np.rot90(lnegnon), np.rot90(rnegnon, k=3)),
                                  axis=1)
    mergecort = np.concatenate((pos_cort_img, neg_cort_img), axis=1)

    return merged, mergecort
Beispiel #4
0
def speedup(loc, coeff, img, rgb, show_res):
    '''
    This test measures the performance of the two implementation
    from initialisation to the end of the cortical transform
    '''
    init_p = time.time()
    GI = retina.gauss_norm_img(int(img.shape[1] / 2), int(img.shape[0] / 2),
                               coeff, loc, img.shape, rgb)

    init_c = time.time()
    ret = retina_cuda.create_retina(
        loc, coeff, img.shape, (int(img.shape[1] / 2), int(img.shape[0] / 2)))

    sample_p = time.time()
    V_p = retina.sample(img, img.shape[1] / 2, img.shape[0] / 2, coeff, loc,
                        rgb)

    sample_c = time.time()
    V_c = ret.sample(img)

    invert_p = time.time()
    inv_p = retina.inverse(V_p, img.shape[1] / 2, img.shape[0] / 2, coeff, loc,
                           GI, img.shape, rgb)

    invert_c = time.time()
    inv_c = ret.inverse(V_c)
    retina_end = time.time()

    cort_init_p = time.time()
    L, R = cortex.LRsplit(loc)
    L_loc, R_loc = cortex.cort_map(L, R)
    L_loc, R_loc, G, cort_size = cortex.cort_prepare(L_loc, R_loc)

    cort_init_c = time.time()
    cort = cortex_cuda.create_cortex_from_fields(loc, rgb=rgb)

    cort_img_p = time.time()
    l_p, r_p = cortex.cort_img(V_p, L, L_loc, R, R_loc, cort_size, G)

    cort_img_c = time.time()
    l_c = cort.cort_image_left(V_c)
    r_c = cort.cort_image_right(V_c)
    cort_end = time.time()

    print '%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,' % (init_c - init_p, sample_p - init_c, sample_c - sample_p, \
                                  invert_p - sample_c, invert_c - invert_p, retina_end - invert_c,\
                                  cort_init_c - cort_init_p, cort_img_p - cort_init_c, cort_img_c - cort_img_p, cort_end - cort_img_c)

    if show_res:
        cv2.namedWindow("inverse CUDA", cv2.WINDOW_NORMAL)
        cv2.imshow("inverse CUDA", inv_c)
        cv2.namedWindow("inverse Piotr", cv2.WINDOW_NORMAL)
        cv2.imshow("inverse Piotr", inv_p)
        c_c = np.concatenate((np.rot90(l_c), np.rot90(r_c, k=3)), axis=1)
        c_p = np.concatenate((np.rot90(l_p), np.rot90(r_p, k=3)), axis=1)
        cv2.namedWindow("cortex CUDA", cv2.WINDOW_NORMAL)
        cv2.imshow("cortex CUDA", c_c)
        cv2.namedWindow("cortex Piotr", cv2.WINDOW_NORMAL)
        cv2.imshow("cortex Piotr", c_p)
def showCortexImg(pV, nV, t):
    """Summary
    This function encapsulates the routine to generate rectified cortical views of 
    one opponent retinal ganglion cell type
    Args:
        pV (vector): Positive rectified imagevector
        nV (vector): Negative rectified imagevector
        t (int): Index position of opponent cell species
    
    Returns:
        mergecort: Return a merged image of all cortical opponent cells as a numpy image array
    """

    lpos, rpos = cortex.cort_img(pV[:, t, :], L, L_loc, R, R_loc, cort_size, G)
    lneg, rneg = cortex.cort_img(nV[:, t, :], L, L_loc, R, R_loc, cort_size, G)
    pos_cort_img = np.concatenate((np.rot90(lpos), np.rot90(rpos, k=3)),
                                  axis=1)
    neg_cort_img = np.concatenate((np.rot90(lneg), np.rot90(rneg, k=3)),
                                  axis=1)

    mergecort = np.concatenate((pos_cort_img, neg_cort_img), axis=1)
    return mergecort
Beispiel #6
0
def correctness_test(loc, coeff, cap, rgb=False):
    '''
    CUDA code uses the minimal initialisation from the host,
    all tracatable values are computed on the GPU
    Get an image from the camera, generate inverse and cortical image 
    with both implementation and subtract the results
    '''
    r, img = cap.read()
    if not rgb: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # create CUDA objects to pass to evaluation
    ret = retina_cuda.create_retina(
        loc, coeff, img.shape, (int(img.shape[1] / 2), int(img.shape[0] / 2)),
        None)
    cort = cortex_cuda.create_cortex_from_fields(loc, rgb=rgb)

    while ord('q') != cv2.waitKey(10):
        r, img = cap.read()
        if not rgb: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        if r:
            '''
            Sample the image img with CUDA retina ret, inverse transform it with ret and 
            create the cortical image with CUDA cortex cort
            Sample and generate retina and cortical images from img with Piotrs's code
            Visually compare the results by showing the subtraction of the generatd images
            '''
            V_c = ret.sample(img)  # sample with CUDA
            inv_c = ret.inverse(V_c)  # inverse with CUDA

            l_c = cort.cort_image_left(V_c)  # left cortical image CUDA
            r_c = cort.cort_image_right(V_c)  # right cortical image CUDA
            c_c = np.concatenate(
                (np.rot90(l_c), np.rot90(r_c, k=3)),
                axis=1)  #concatenate the results into one image

            # create Piotr's retina and cortical images

            GI = retina.gauss_norm_img(int(img.shape[1] / 2),
                                       int(img.shape[0] / 2), coeff, loc,
                                       img.shape, rgb)
            L, R = cortex.LRsplit(loc)
            L_loc, R_loc = cortex.cort_map(L, R)
            L_loc, R_loc, G, cort_size = cortex.cort_prepare(L_loc, R_loc)
            V_p = retina.sample(img, img.shape[1] / 2, img.shape[0] / 2, coeff,
                                loc, rgb)
            inv_p = retina.inverse(V_p, img.shape[1] / 2, img.shape[0] / 2,
                                   coeff, loc, GI, img.shape, rgb)
            l_p, r_p = cortex.cort_img(V_p, L, L_loc, R, R_loc, cort_size, G)
            c_p = np.concatenate((np.rot90(
                l_p[:l_c.shape[0], :]), np.rot90(r_p[:r_c.shape[0], :], k=3)),
                                 axis=1)

            # show CUDA results
            cv2.namedWindow("inverse CUDA", cv2.WINDOW_NORMAL)
            cv2.imshow("inverse CUDA", inv_c)
            cv2.namedWindow("cortex CUDA", cv2.WINDOW_NORMAL)
            cv2.imshow("cortex CUDA", c_c)

            # show Piotr's results
            cv2.namedWindow("inverse Piotr", cv2.WINDOW_NORMAL)
            cv2.imshow("inverse Piotr", inv_p)
            cv2.namedWindow("cortex Piotr", cv2.WINDOW_NORMAL)
            cv2.imshow("cortex Piotr", c_p)

            # show the difference of the images
            cv2.namedWindow("inverse diff", cv2.WINDOW_NORMAL)
            cv2.imshow("inverse diff", np.power((inv_c - inv_p), 2) * 255)
            cv2.namedWindow("cortex diff", cv2.WINDOW_NORMAL)
            cv2.imshow("cortex diff", np.power((c_c - c_p), 2) * 255)