Beispiel #1
0
def test_quad_cost_with_wrapping():
    p = create_params()
    n, k = p.n, p.k
    x_dim, u_dim = 3, 2
    a, b = p.a, p.b
    goal_x, goal_y = 10., 10.

    dubins = DubinsV1(p.dt, create_system_dynamics_params())

    goal = np.array([goal_x, goal_y, 0.], dtype=np.float32)
    x_ref_nk3 = np.array(np.tile(goal, (n, k, 1)))
    u_ref_nk2 = np.array(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory_ref = dubins.assemble_trajectory(x_ref_nk3, u_ref_nk2)

    cost_fn = QuadraticRegulatorRef(trajectory_ref, dubins, p)
    x_nk3 = np.array(np.zeros((n, k, x_dim), dtype=np.float32))
    u_nk2 = np.array(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory = dubins.assemble_trajectory(x_nk3, u_nk2)
    cost_nk, _ = cost_fn.compute_trajectory_cost(trajectory)

    cost = .5 * (a * goal_x**2 + a * goal_y**2)
    assert (cost_nk.shape[0] == n and cost_nk.shape[1] == k)
    assert ((cost_nk == cost).all())

    H_xx_nkdd, H_xu_nkdf, H_uu_nkff, J_x_nkd, J_u_nkf = cost_fn.quad_coeffs(
        trajectory)
    assert (np.equal(H_xx_nkdd[0, 0], np.eye(x_dim)).all())
    assert ((H_xu_nkdf == 0.).all())
    assert (np.equal(H_uu_nkff[0, 0], np.eye(u_dim) * b).all())
Beispiel #2
0
def test_lqr1(visualize=False):
    p = create_params()
    np.random.seed(seed=p.seed)
    n, k = p.n, 50
    dt = p.dt

    db = DubinsV1(dt, params=p.system_dynamics_params.simulation_params)
    x_dim, u_dim = db._x_dim, db._u_dim

    x_n13 = tf.constant(np.zeros((n, 1, x_dim)), dtype=tf.float32)
    v_1k = np.ones((k - 1, 1)) * .1
    w_1k = np.linspace(.5, .3, k - 1)[:, None]

    u_1k2 = tf.constant(np.concatenate([v_1k, w_1k], axis=1)[None],
                        dtype=tf.float32)
    u_nk2 = tf.zeros((n, k - 1, 2), dtype=tf.float32) + u_1k2
    trajectory_ref = db.simulate_T(x_n13, u_nk2, T=k)

    cost_fn = QuadraticRegulatorRef(trajectory_ref, db, p)

    x_nk3 = tf.constant(np.zeros((n, k, x_dim), dtype=np.float32))
    u_nk2 = tf.constant(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory = db.assemble_trajectory(x_nk3, u_nk2)

    lqr_solver = LQRSolver(T=k - 1, dynamics=db, cost=cost_fn)

    start_config = db.init_egocentric_robot_config(dt=dt, n=n)
    lqr_res = lqr_solver.lqr(start_config, trajectory, verbose=False)
    trajectory_opt = lqr_res['trajectory_opt']
    assert (np.abs(lqr_res['J_hist'][1][0] - .022867) < 1e-4)
    assert (np.abs(lqr_res['J_hist'][0][0] - 38.17334) < 1e-4)

    if visualize:
        pos_ref = trajectory_ref.position_nk2()[0]
        pos_opt = trajectory_opt.position_nk2()[0]
        heading_ref = trajectory_ref.heading_nk1()[0]
        heading_opt = trajectory_opt.heading_nk1()[0]
        fig = plt.figure()
        ax = fig.add_subplot(121)
        ax.plot(pos_ref[:, 0], pos_ref[:, 1], 'r-', label='ref')
        ax.quiver(pos_ref[:, 0], pos_ref[:, 1], tf.cos(heading_ref),
                  tf.sin(heading_ref))
        ax.plot(pos_opt[:, 0], pos_opt[:, 1], 'b-', label='opt')
        ax.quiver(pos_opt[:, 0], pos_opt[:, 1], tf.cos(heading_opt),
                  tf.sin(heading_opt))
        ax.legend()

        # plt.show()
        fig.savefig('./tests/lqr/test_lqr1.png',
                    bbox_inches='tight',
                    pad_inches=0)
    else:
        print('rerun test_lqr1 with visualize=True to visualize the test')
Beispiel #3
0
def test_lqr0(visualize=False):
    p = create_params()
    np.random.seed(seed=p.seed)
    n, k = 1, p.k
    dt = p.dt

    db = DubinsV1(dt, params=p.system_dynamics_params.simulation_params)
    x_dim, u_dim = db._x_dim, db._u_dim

    goal_x, goal_y = 4.0, 0.0
    goal = np.array([goal_x, goal_y, 0.], dtype=np.float32)
    x_ref_nk3 = tf.constant(np.tile(goal, (n, k, 1)))
    u_ref_nk2 = tf.constant(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory_ref = db.assemble_trajectory(x_ref_nk3, u_ref_nk2)

    cost_fn = QuadraticRegulatorRef(trajectory_ref, db, p)

    x_nk3 = tf.constant(np.zeros((n, k, x_dim), dtype=np.float32))
    u_nk2 = tf.constant(np.zeros((n, k, u_dim), dtype=np.float32))
    # Initiate a blank trajectory (all 0's)
    trajectory = db.assemble_trajectory(x_nk3, u_nk2)

    lqr_solver = LQRSolver(T=k - 1, dynamics=db, cost=cost_fn)
    cost = lqr_solver.evaluate_trajectory_cost(trajectory)
    expected_cost = .5 * goal_x**2 * k + .5 * goal_y**2 * k
    assert ((cost.numpy() == expected_cost).all())

    start_config = db.init_egocentric_robot_config(dt=dt, n=n)
    lqr_res = lqr_solver.lqr(start_config, trajectory, verbose=False)
    trajectory_opt = lqr_res['trajectory_opt']
    J_opt = lqr_res['J_hist'][-1]
    assert ((J_opt.numpy() == 8.).all())
    assert (np.allclose(trajectory_opt.position_nk2()[:, 1:, 0], 4.0))

    if visualize:
        pos_ref = trajectory_ref.position_nk2()[0]
        pos_opt = trajectory_opt.position_nk2()[0]
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.scatter(pos_ref[:, 0], pos_ref[:, 1])
        ax.plot(pos_opt[:, 0], pos_opt[:, 1], 'b--', label='opt')
        ax.legend()
        # plt.show()
        fig.savefig('./tests/lqr/test_lqr0.png',
                    bbox_inches='tight',
                    pad_inches=0)
    else:
        print('rerun test_lqr0 with visualize=True to visualize the test')
def test_lqr_feedback_coordinate_transform():

    p = create_params()
    n, k = p.n, p.k
    dubins = p.system_dynamics_params.system(p.dt, params=p.simulation_params)

    # # Robot starts from (0, 0, 0)
    # # and does a small spiral
    start_pos_n13 = tf.constant(np.array([[[0.0, 0.0, 0.0]]], dtype=np.float32))
    speed_nk1 = np.ones((n, k - 1, 1), dtype=np.float32) * 2.0
    angular_speed_nk1 = np.linspace(1.5, 1.3, k - 1, dtype=np.float32)[None, :, None]
    u_nk2 = tf.constant(np.concatenate([speed_nk1, angular_speed_nk1], axis=2))
    traj_ref_egocentric = dubins.simulate_T(start_pos_n13, u_nk2, k)

    cost_fn = QuadraticRegulatorRef(traj_ref_egocentric, dubins, p)

    lqr_solver = LQRSolver(T=k - 1, dynamics=dubins, cost=cost_fn)

    start_config0 = SystemConfig(dt=p.dt, n=p.n, k=1,
                                 position_nk2=start_pos_n13[:, :, :2],
                                 heading_nk1=start_pos_n13[:, :, 2:3])
    lqr_res = lqr_solver.lqr(start_config0, traj_ref_egocentric, verbose=False)
    traj_lqr_egocentric = lqr_res['trajectory_opt']
    K_array_egocentric = lqr_res['K_opt_nkfd']
    k_array = lqr_res['k_opt_nkf1']

    # The origin of the egocentric frame in world coordinates
    start_pos_n13 = tf.constant(np.array([[[1.0, 1.0, np.pi / 2.]]], dtype=np.float32))
    ref_config = SystemConfig(dt=p.dt, n=p.n, k=1,
                              position_nk2=start_pos_n13[:, :, :2],
                              heading_nk1=start_pos_n13[:, :, 2:3])

    # Convert to world coordinates
    traj_ref_world = dubins.to_world_coordinates(ref_config, traj_ref_egocentric, mode='new')
    traj_lqr_world = dubins.to_world_coordinates(ref_config, traj_lqr_egocentric, mode='new')
    K_array_world = dubins.convert_K_to_world_coordinates(ref_config, K_array_egocentric, mode='new')

    # Apply K_array_world to the system from ref_config
    traj_test_world = lqr_solver.apply_control(ref_config, traj_ref_world,
                                               k_array, K_array_world)

    # Check that the LQR Trajectory computed using K_array_egocentric
    # then transformed to world (traj_lqr_world) matches the
    # LQR Trajectory computed directly using K_array_world
    assert((tf.norm(traj_lqr_world.position_nk2() - traj_test_world.position_nk2(), axis=2).numpy() < 1e-4).all())
    assert((tf.norm(angle_normalize(traj_lqr_world.heading_nk1() - traj_test_world.heading_nk1()), axis=2).numpy() < 1e-4).all())
    assert((tf.norm(traj_lqr_world.speed_nk1() - traj_test_world.speed_nk1(), axis=2).numpy() < 1e-4).all())
    assert((tf.norm(traj_lqr_world.angular_speed_nk1() - traj_test_world.angular_speed_nk1(), axis=2).numpy() < 1e-4).all())
Beispiel #5
0
def test_lqr2(visualize=False):
    p = create_params()
    np.random.seed(seed=p.seed)
    n, k = 2, 50
    dt = p.dt

    db = DubinsV1(dt, params=p.system_dynamics_params.simulation_params)
    x_dim, u_dim = db._x_dim, db._u_dim

    x_n13 = tf.constant(np.zeros((n, 1, x_dim)), dtype=tf.float32)
    v_1k, w_1k = np.ones((k - 1, 1)) * .1, np.linspace(.5, .3, k - 1)[:, None]

    u_1k2 = tf.constant(np.concatenate([v_1k, w_1k], axis=1)[None],
                        dtype=tf.float32)
    u_nk2 = tf.zeros((n, k - 1, 2), dtype=tf.float32) + u_1k2
    trajectory_ref = db.simulate_T(x_n13, u_nk2, T=k)

    x_nk3, u_nk2 = db.parse_trajectory(trajectory_ref)

    # stack two different reference trajectories together
    # to verify that batched LQR works across the batch dim
    goal_x, goal_y = 4.0, 0.0
    goal = np.array([goal_x, goal_y, 0.], dtype=np.float32)
    x_ref_nk3 = tf.constant(np.tile(goal, (1, k, 1)))
    u_ref_nk2 = tf.constant(np.zeros((1, k, u_dim), dtype=np.float32))
    x_nk3 = tf.concat([x_ref_nk3, x_nk3[0:1]], axis=0)
    u_nk2 = tf.concat([u_ref_nk2, u_nk2[0:1]], axis=0)
    trajectory_ref = db.assemble_trajectory(x_nk3, u_nk2)

    cost_fn = QuadraticRegulatorRef(trajectory_ref, db, p)

    x_nk3 = tf.constant(np.zeros((n, k, x_dim), dtype=np.float32))
    u_nk2 = tf.constant(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory = db.assemble_trajectory(x_nk3, u_nk2)

    lqr_solver = LQRSolver(T=k - 1, dynamics=db, cost=cost_fn)

    start_config = db.init_egocentric_robot_config(dt=dt, n=n)
    lqr_res = lqr_solver.lqr(start_config, trajectory, verbose=False)
    trajectory_opt = lqr_res['trajectory_opt']
    assert (np.abs(lqr_res['J_hist'][1][0] - 8.0) < 1e-4)
    assert (np.abs(lqr_res['J_hist'][0][0] - 400.0) < 1e-4)

    if visualize:
        pos_ref = trajectory_ref.position_nk2()[0]
        pos_opt = trajectory_opt.position_nk2()[0]
        heading_ref = trajectory_ref.heading_nk1()[0]
        heading_opt = trajectory_opt.heading_nk1()[0]
        fig = plt.figure()
        ax = fig.add_subplot(121)
        ax.plot(pos_ref[:, 0], pos_ref[:, 1], 'r-', label='ref')
        ax.quiver(pos_ref[:, 0], pos_ref[:, 1], tf.cos(heading_ref),
                  tf.sin(heading_ref))
        ax.plot(pos_opt[:, 0], pos_opt[:, 1], 'b-', label='opt')
        ax.quiver(pos_opt[:, 0], pos_opt[:, 1], tf.cos(heading_opt),
                  tf.sin(heading_opt))
        ax.set_title('Goal [4.0, 0.0]')
        ax.legend()

        pos_ref = trajectory_ref.position_nk2()[1]
        pos_opt = trajectory_opt.position_nk2()[1]
        heading_ref = trajectory_ref.heading_nk1()[1]
        heading_opt = trajectory_opt.heading_nk1()[1]
        ax = fig.add_subplot(122)
        ax.plot(pos_ref[:, 0], pos_ref[:, 1], 'r-', label='ref')
        ax.quiver(pos_ref[:, 0], pos_ref[:, 1], tf.cos(heading_ref),
                  tf.sin(heading_ref))
        ax.plot(pos_opt[:, 0], pos_opt[:, 1], 'b-', label='opt')
        ax.quiver(pos_opt[:, 0], pos_opt[:, 1], tf.cos(heading_opt),
                  tf.sin(heading_opt))
        ax.set_title('Nonlinear Traj')
        ax.legend()

        # plt.show()
        fig.savefig('./tests/lqr/test_lqr2.png',
                    bbox_inches='tight',
                    pad_inches=0)

    else:
        print('rerun test_lqr2 with visualize=True to visualize the test')