Beispiel #1
0
def test_indexing():

    # Definitions
    farr = np.array([1.5, 0, 0, 1, 1, 0])  # Float array
    barr = np.array(farr, dtype=bool)  # Boolean array
    darr = np.array([0, np.nan, 1, np.nan, 0,
                     np.nan])  # Defined/undefined array
    inds = np.array([0, 10, 20, 30, 40, 50])  # Indices
    inds2 = np.array([1, 2, 3, 4])  # Skip first and last index

    # Test true, false, defined, and undefined
    assert cv.true(farr).tolist() == [0, 3, 4]
    assert cv.false(farr).tolist() == [1, 2, 5]
    assert cv.defined(darr).tolist() == [0, 2, 4]
    assert cv.undefined(darr).tolist() == [1, 3, 5]

    # Test with indexing
    assert cv.itrue(barr, inds).tolist() == [0, 30, 40]
    assert cv.ifalse(barr, inds).tolist() == [10, 20, 50]
    assert cv.idefined(darr, inds).tolist() == [0, 20, 40]
    assert cv.iundefined(darr, inds).tolist() == [10, 30, 50]

    # Test with double indexing
    assert cv.itruei(barr, inds2).tolist() == [3, 4]
    assert cv.ifalsei(barr, inds2).tolist() == [1, 2]
    assert cv.idefinedi(darr, inds2).tolist() == [2, 4]
    assert cv.iundefinedi(darr, inds2).tolist() == [1, 3]

    return
Beispiel #2
0
import sciris as sc
import covasim as cv

states = [
    'susceptible',
    'naive',
    'exposed',
    'infectious',
    'symptomatic',
    'severe',
    'critical',
    'tested',
    'diagnosed',
    'recovered',
    'dead',
]

sim = cv.Sim()
sim.run()

d = sc.objdict()
for state in states:
    n_in = len(cv.true(sim.people[state]))
    n_out = len(cv.false(sim.people[state]))
    d[state] = n_in
    assert n_in + n_out == sim['pop_size']

print(sim.summary)
print(d)
assert d.naive + d.exposed + d.recovered + d.dead == sim['pop_size']
Beispiel #3
0
def test_states():
    ''' Test state consistency against state_diagram.xlsx '''

    filename = 'state_diagram.xlsx'
    sheets   = ['Without waning', 'With waning']
    indexcol = 'In ↓ you can be →'

    # Load state diagram
    dfs = sc.odict()
    for sheet in sheets:
        dfs[sheet] = pd.read_excel(filename, sheet_name=sheet)
        dfs[sheet] = dfs[sheet].set_index(indexcol)

    # Create and run simulation
    for use_waning in [False, True]:
        sc.heading(f'Testing state consistency with waning = {use_waning}')
        df = dfs[use_waning] # Different states are possible with or without waning

        # Parameters chosen to be midway through the sim so as few states as possible are empty
        pars = dict(
            pop_size = 1e3,
            pop_infected = 20,
            n_days = 70,
            use_waning = use_waning,
            verbose = 0,
            interventions = [
                cv.test_prob(symp_prob=0.4, asymp_prob=0.01),
                cv.contact_tracing(trace_probs=0.1),
                cv.simple_vaccine(days=60, prob=0.1)
            ]
        )
        sim = cv.Sim(pars).run()
        ppl = sim.people

        # Check states
        errormsg = ''
        states = df.columns.values.tolist()
        for s1 in states:
            for s2 in states:
                if s1 != s2:
                    relation = df.loc[s1, s2] # e.g. df.loc['susceptible', 'exposed']
                    print(f'Checking {s1:13s} → {s2:13s} = {relation:2n} ... ', end='')
                    inds     = cv.true(ppl[s1])
                    n_inds   = len(inds)
                    vals2    = ppl[s2][inds]
                    is_true  = cv.true(vals2)
                    is_false = cv.false(vals2)
                    n_true   = len(is_true)
                    n_false  = len(is_false)
                    if relation == 1 and n_true != n_inds:
                        errormsg = f'Being {s1}=True implies {s2}=True, but only {n_true}/{n_inds} people are'
                        print(f'× {n_true}/{n_inds} error!')
                    elif relation == -1 and n_false != n_inds:
                        errormsg = f'Being {s1}=True implies {s2}=False, but only {n_false}/{n_inds} people are'
                        print(f'× {n_false}/{n_inds} error!')
                    else:
                        print(f'✓ {n_true}/{n_inds}')
                    if errormsg:
                        raise RuntimeError(errormsg)

    return
Beispiel #4
0
def plot():
    fig = pl.figure(num='Fig. 3: Theoretical TTQ', figsize=(24,14))

    euclid = False
    ay0 = 0.06
    adx = 0.2
    ady = 0.91
    axa, axb, axc = 0.04, 0.27, 0.49
    a['none']  = pl.axes([axa, ay0, adx, ady])
    a['test']  = pl.axes([axb, ay0, adx, ady])
    a['trace'] = pl.axes([axc, ay0, adx, ady])

    xoff = 0.02
    yoff = 0.05
    pl.figtext(axa-xoff, ady+yoff, 'a', fontsize=40)
    pl.figtext(axb-xoff, ady+yoff, 'b', fontsize=40)
    pl.figtext(axc-xoff, ady+yoff, 'c', fontsize=40)

    max_n = 0; ζ = {'↓':-2, '↑':10} # Configure plot zorder

    # Processing trees
    for k in ['none', 'test', 'trace']:
        tt = t[k]
        max_n = max(max_n, len(tt.infection_log))

        # Get the history of each chain
        hist = [None]*p.pop_size
        detailed = tt.detailed.to_dict('records')
        for i,entry in enumerate(detailed):
            if ~np.isnan(entry['target']):
                hist[i] = [i]
                source = entry['source']
                while ~np.isnan(source):
                    hist[i].insert(0, source)
                    source = detailed[int(source)]['source']

        # Figure out order
        histstrs = []
        for h in hist:
            if h is not None:
                string = ''.join([str(n) for n in h])
                histstrs.append(string)
        iorder = np.arange(p.pop_size)
        inf_inds = cv.false(s[k].people.susceptible)
        iorder[inf_inds] = inf_inds[np.argsort(np.argsort(histstrs))] # This actually works 🤔🙈
        min_inf_ind = inf_inds.min()
        min_ind_ind = sc.findinds(iorder==min_inf_ind)[0]
        orig_0_ind = sc.findinds(iorder==0)[0]
        iorder[min_ind_ind] = 0
        iorder[orig_0_ind] = min_inf_ind

        # Initialization
        n = p.n_days + 1
        frames = [list() for i in range(n)]
        quar_color  = '#6495ed'
        diag_color  = '#80d380'
        inf_color   = '#b22222'
        quar_color2 = '#b3ceff'

        # Construct each frame of the animation
        for ddict in detailed:  # Loop over every person
            if np.isnan(ddict['target']):
                continue # Skip the 'None' node corresponding to seeded infections

            frame = {}
            target_ind = ddict['target']

            if not np.isnan(ddict['date']): # If this person was infected
                source_ind = ddict['source'] # Index of the person who infected the target
                target_date = ddict['date']
                if ~np.isnan(source_ind):  # Seed infections and importations won't have a source
                    source_date = detailed[int(source_ind)]['date']
                else:
                    source_ind = target_ind
                    source_date = 0

                # Construct this frame
                frame['x'] = [int(source_date), int(target_date)]
                frame['y'] = [int(source_ind), int(target_ind)]
                frame['c'] = inf_color
                frames[int(target_date)].append(frame)

        # Plot
        pl.sca(a[k])
        for frame in frames:
            for entry in frame:
                x0 = entry['x'][0]
                x1 = entry['x'][1]
                y0 = iorder[entry['y'][0]]
                y1 = iorder[entry['y'][1]]
                color = entry['c']
                if euclid:
                    pl.plot([x0, x1], [y0, y1], lw=3, c=[0.7]*3)
                else:
                    pl.plot([x0, x0, x1], [y0, y1, y1], lw=3, c=[0.7]*3)
                pl.scatter([x1], [y1], s=120, zorder=ζ['↑'], c=[color])

        for i in range(p.pop_size):
            ii = iorder[i]
            dq = s[k].people.date_quarantined[i]
            dd = s[k].people.date_diagnosed[i]
            de = s[k].people.date_exposed[i]
            qdy = 0.2
            α = 0.9
            mark = ['>', 'x'][1]
            if not np.isnan(dq) and not np.isnan(de) and np.isnan(dd) and verbose:
                print(f'Person {i} is infected and quarantined but not diagnosed, due to presymptomatic period')
            if not np.isnan(dq):
                pl.plot([de, dq], [ii, ii], c=quar_color2, linestyle='--', zorder=ζ['↓']-4)
                pl.fill_between([dq, dq+14], [ii-qdy]*2, [ii+qdy]*2, facecolor=quar_color2, zorder=ζ['↓']-2, alpha=α)
                if np.isnan(de):
                    pl.scatter([dq], [ii], s=120, c='w', edgecolor=quar_color2, lw=2, alpha=1.0, zorder=ζ['↓'])
            if not np.isnan(dd):
                if not np.isnan(dq):
                    color = quar_color2
                else:
                    color = diag_color
                pl.plot([de, dd], [ii, ii], c=color, linestyle='--', zorder=ζ['↓']-4)
                pl.scatter([dd], [ii], marker=mark, linewidth=3, s=120, c=[color], zorder=ζ['↓']+1)
                pl.fill_between([dd, dd+14], [ii-qdy]*2, [ii+qdy]*2, facecolor=diag_color, zorder=ζ['↓']-1, alpha=α)