def run(self): # Wait 5 seconds ... time.sleep(5) # ... and abort the CPLEX optimization. print("Aborting CPLEX via a cplex.terminate() call.") cplex.terminate()
def run(self): # Wait 5 seconds ... time.sleep(5) # ... and abort the CPLEX optimization. print "Aborting CPLEX via a cplex.terminate() call." cplex.terminate()
dense.parameters.lpmethod.set(alg.barrier) dense.parameters.barrier.crossover.set(-1) start_time = dense.get_time() dense.solve() end_time = dense.get_time() iter_time = end_time - start_time times.append(iter_time) #TODO: check if feasible, if not divide the scalar by 2. if(dense.solution.get_status() == dense.solution.status.infeasible_or_unbounded): print "infeasible solution." scalar = scalar * 0.5 lamda = oldlamda[:] else: j += 1 if scalar < 0.01: break prev_t = dense.solution.get_values(0) prev_xijm = dense.solution.get_values(range(1,len(xijm))) prev_val = dense.solution.get_objective_value() print "Iteration "+str(j)+" ("+str(iter_time)+" sec.): "+str(prev_val) total_time = sum(times) print "Total time: " + str(total_time) + " sec." printResults.save(dense) cplex.terminate() os.remove("dense.lp")