Beispiel #1
0
def main():

    jieba_instance = Tokenizer()
    seg_list = jieba_instance.cut("我来到北京清华大学", cut_all=True)
    print(type(seg_list))
    print("Full Mode: " + "/ ".join(seg_list))  # 全模式

    seg_list = jieba_instance.cut("他来到了网易杭研大厦")  # 默认是精确模式
    print(", ".join(seg_list))

    seg_list = jieba_instance.cut_for_search(
        "小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
    print(", ".join(seg_list))

    t1 = datetime.datetime.now()
    initialize()
    t2 = datetime.datetime.now()
    print("initialize costs:%s" % (t2 - t1))

    print(lcut("我来到北京清华大学"))
    print(list(cut("我来到北京清华大学")))
    print(cut("我来到北京清华大学", cut_all=True))
    print(lcut_for_search("我来到北京清华大学"))
    print(list(cut_for_search("我来到北京清华大学")))

    print(pseg.lcut("我来到北京清华大学"))
    print(list(pseg.cut("我来到北京清华大学")))

    s = "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。"
    r = analyse.extract_tags(s)
    print(r)

    r = analyse.textrank(s, withWeight=True)
    print(r)

    tr = TextRank(jieba_instance)
    print(tr.textrank(s, topK=2, withWeight=True))

    tf = TFIDF(jieba_instance)
    print(tf.extract_tags(s, topK=10))

    result = jieba_instance.tokenize('永和服装饰品有限公司')
    for tk in result:
        print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))

    print(tokenize('永和服装饰品有限公司', mode="search"))

    jieba_instance.load_userdict(["卧槽"])

    load_userdict(set(["卧槽"]))
 def setUpClass(cls):
     cls.dt = Tokenizer(DICT)
     cls.sentence = "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。"
     cls.extractor = TextRankExtractor(cls.dt)
Beispiel #3
0
 def takes_arg3_as_stopword_path(self):
     Tokenizer(DICT, USER_DICT, STOP_WORD)
Beispiel #4
0
 def takes_arg2_as_user_dict_path(self):
     Tokenizer(DICT, USER_DICT)
Beispiel #5
0
 def setUpClass(cls):
     cls.dt = Tokenizer(DICT)
     cls.dt.add_word("区块链", 10, "nz")
Beispiel #6
0
# -*- coding: utf-8 -*-
import re
import os
import math
import pickle
from collections import Counter
from cppjieba_py import Tokenizer

big_dict = os.path.join(os.path.dirname(__file__), "data", "dict.txt.big")
tokenizer = Tokenizer(big_dict)

DATA_PATH = os.path.join(os.path.dirname(__file__), "data", "dict.pkl")

FIXED_PA = 1.6


def load_data():
    with open(DATA_PATH, "rb") as f:
        return pickle.load(f)


class Classifier():
    def __init__(self, *args):
        self.initialized = False
        if len(args):
            self._initialize(*args)

    def _initialize(self, pos_emotion, pos_evaluation, neg_emotion,
                    neg_evaluation, degrees, negations):
        self.pos_emotion = pos_emotion
        self.neg_emotion = neg_emotion