def test_n_closest():
    """
    Get ts 100; run search by id in on, confirm we get back 3 close ts
    and that distances in returned dict match actual distances
    """

    # Attempt to get non-existent time series
    with raises(ValueError):
        n_closest = simsearch_by_id(500, 3)

    with raises(ValueError):
        _ = get_by_id(500)

    # Get ts 100
    ats_100 = get_by_id(100)

    n_closest = simsearch_by_id(100, 3)
    assert (len(n_closest) <= 3)

    # Confirm that distance measures are accurate
    for dist in n_closest:
        tsid = n_closest[dist]
        other_ts = get_by_id(tsid)
        assert (abs(
            dist -
            kernel_dist(standardize(ats_100), standardize(other_ts)) < .0001))
def test_crosscorr():

    t1 = standardize(tsmaker(0.5, 0.1, random.uniform(0, 10)))

    # First confirm that the kernel correlation and distance methods
    # return 1 and 0 when comparing a ts with itself
    assert (kernel_corr(t1, t1) == 1)
    assert (kernel_dist(t1, t1) == 0)

    t2 = standardize(tsmaker(0.5, 0.1, random.uniform(0, 10)))
    t3 = standardize(random_ts(0.5))

    # Now let's do the opposite -- ensure that we see some distance for different curves
    assert (kernel_dist(t1, t2) > 0)
    assert (kernel_dist(t1, t3) > 0)
    assert (kernel_corr(t1, t2) < 1)
    assert (kernel_corr(t1, t3) < 1)
Beispiel #3
0
def calc_distances(vp_k, timeseries_dict):
    """Calculates kernel distance between vantage point and all loaded light curves"""
    distances = []
    vp = standardize(timeseries_dict[vp_k])
    for k in timeseries_dict:
        if k != vp_k:
            k_dist = kernel_dist(vp, standardize(timeseries_dict[k]))
            distances.append((k_dist, k))
    return distances
Beispiel #4
0
def find_closest_vp(vps_dict, ts):
    """
    Calculates distances from time series to all vantage points.
    Returns tuple with filename of closest vantage point and distance to that vantage point.
    """
    s_ts = standardize(ts)
    vp_distances = sorted([(kernel_dist(s_ts, standardize(vps_dict[vp])), vp)
                           for vp in vps_dict])
    dist_to_vp, vp_fn = vp_distances[0]
    return (vp_fn, dist_to_vp)
def test_add_ts():
    """ Create a ts, add to db, retrieve it, assert that it's the same ts"""
    new_ts = standardize(tsmaker(0.5, 0.1, random.uniform(0, 10)))

    new_tsid = add_ts(new_ts)
    ts_as_saved = get_by_id(new_tsid)
    assert (kernel_dist(standardize(ts_as_saved), standardize(new_ts)) <
            .00001)

    # Confirm that we get the same id back when we attempt to add it a second time

    assert (add_ts(new_ts) == new_tsid)
def test_save_ts_to_db_two():
    new_ts = ArrayTimeSeries(values=[0, 1, 2, 3, 10],
                             times=[0., .2, .3, .5, 1])
    #new_ts = ArrayTimeSeries(values=[ 1.90015224,4.11290636,2.45059022,2.45251473,-4.1988066], times=[ 0.,0.2,0.4,0.6,0.8])
    #new_ts = (tsmaker(0.5, 0.1, random.uniform(0,10),5))

    new_tsid = s_client.save_ts_to_db(new_ts)
    echo_ts = s_client.get_ts_with_id(new_tsid)
    interpolated_ats = new_ts.interpolate(
        np.arange(0.0, 1.0, (1.0 / TS_LENGTH)))
    assert (kernel_dist(standardize(echo_ts), standardize(interpolated_ats)) <
            .00001)
Beispiel #7
0
def add_ts_to_vpdb(data_tuple):
    """
    Worker function called by add_ts_to_vpdbs above.
    This process is repeated on each vantage point.
    """
    file, fsm, s_ts, ts_fn, db_dir = data_tuple
    vp_ts = load_ts(file[:-5], fsm)
    dist_to_vp = kernel_dist(standardize(vp_ts), s_ts)
    # print("Adding " + ts_fn + " to " + (db_dir + file))
    db = connect(db_dir + file)
    db.set(dist_to_vp, ts_fn)
    db.commit()
    db.close()
def test_crosscorr_errors():
    """Test that we have checks for varies error conditions"""

    t1 = standardize(tsmaker(0.5, 0.1, random.uniform(0, 10)))
    t4 = standardize(random_ts(0.5, 200))
    t5 = tsmaker(0.5, 0.1, random.uniform(0, 10))

    #Confirm that we raise value error if we attempt to compare time series
    # that are not the same length
    with raises(ValueError):
        ccor(t1, t4)

    with raises(ValueError):
        kernel_dist(t1, t4)

    with raises(ValueError):
        kernel_corr(t1, t4)

    #Confirm that we raise value error if we attempt to compare time series
    # that have not been standardized first
    t5 = tsmaker(0.5, 0.1, random.uniform(0, 10))
    with raises(ValueError):
        kernel_dist(t4, t5)
def test_save_ts_to_db():
    # Save a ts, request it by id, compare to original
    new_ts = (tsmaker(0.5, 0.1, random.uniform(0, 10)))
    new_tsid = s_client.save_ts_to_db(new_ts)
    echo_ts = s_client.get_ts_with_id(new_tsid)
    assert (kernel_dist(standardize(echo_ts), standardize(new_ts)) < .00001)
Beispiel #10
0
def calc_distance(lc_candidate_data):
    """Working function called by search_vpdb_for_n above"""
    ts_fn, fsm, s_ts = lc_candidate_data
    candidate_ts = load_ts(ts_fn, fsm)
    dist_to_ts = kernel_dist(standardize(candidate_ts), s_ts)
    return (dist_to_ts, tsfn_to_id(ts_fn))