def test_ac3(self): for puzzle in [easy1, harder1]: s = Sudoku(puzzle) # construct a Sudoku problem s.display(s.infer_assignment()) print("\n") AC3(s) s.display(s.infer_assignment()) if s.goal_test(s.curr_domains): print("\nProblem was solved by AC3\n") else: print("\nProblem was not solved by AC3. Start searching ...\n")
def game(): print("================================= Sudoku ==================================") print("CS 550 Artificial Intelligence | Prof. Roch | Assignment 4 | kingofthenorth") print("============================= Creating game... ============================") game_start = time.time() for puzzle in [easy1, harder1]: # Creates an instance of the puzzle to work with s = Sudoku(puzzle) # Creates a viewable interface of the working sudoku puzzle print("\nInitial problem:") s.display(s.infer_assignment()) # Applies the AC3 constraint AC3(s) print("\nAfter AC3 constraint propagation applied!") # Keeps track of time of the puzzle puzzle_start = time.time() # If goal is not reached yet, keep trying to find a solution if not s.goal_test(s.curr_domains): print("\nBacktracking search starting...") result = backtracking_search(s, select_unassigned_variable=mrv) if result: # Success print("\nBacktracking solution:") s.display(s.infer_assignment()) else: # Failure print("\nBacktracking failed! :(") current = time.time() # Time information to be relayed print("\nPuzzle time: {} | Overall time: {}".format( elapsed(puzzle_start, current), elapsed(game_start, current)))
from csp_lib.sudoku import (Sudoku, easy1, harder1) from constraint_prop import AC3 from backtrack import backtracking_search from csp_lib.backtrack_util import mrv, mac easy_puzzle = Sudoku(easy1) easy_puzzle.display(easy_puzzle.infer_assignment()) print(AC3(easy_puzzle)) easy_puzzle.display(easy_puzzle.infer_assignment()) hard_puzzle = Sudoku(harder1) hard_puzzle.display(hard_puzzle.infer_assignment()) print(AC3(easy_puzzle)) result = backtracking_search(hard_puzzle, select_unassigned_variable=mrv, inference=mac) #print("result = " + str(result)) hard_puzzle.display(hard_puzzle.infer_assignment()) #easy_puzzle.display(easy_puzzle.infer_assignment()) ''' print("\n") print("Domains Stuff") print("print(easy_puzzle.domains)") print(easy_puzzle.domains) print("print(len(easy_puzzle.domains))") print(len(easy_puzzle.domains)) print("print(type(easy_puzzle.domains[0]))") print(type(easy_puzzle.domains[0])) print("print(type(easy_puzzle.domains[2]))")
from constraint_prop import AC3 from csp_lib.backtrack_util import mrv, mac, forward_checking, lcv from csp_lib.sudoku import (Sudoku, easy1, harder1) def is_solved(sudoku: Sudoku): for var in sudoku.curr_domains: if len(sudoku.curr_domains[var]) is not 1: return False return True if __name__ == "__main__": for puzzle in [easy1, harder1]: # for puzzle in [easy1]: s = Sudoku(puzzle) # construct a Sudoku problem print("New Sudoku Puzzle") s.display(s.infer_assignment()) AC3(s) if is_solved(s): print("Solved via AC3") s.display(s.infer_assignment()) else: print("Could not solve via AC3: Current Puzzle") s.display(s.infer_assignment()) print("Trying to solve via Back Track") backtracking_search(s, inference=forward_checking, order_domain_values=lcv, select_unassigned_variable=mrv) if is_solved(s): print("Solved via Back Track") s.display(s.infer_assignment()) else:
from csp_lib.sudoku import (Sudoku, easy1, harder1) from constraint_prop import AC3 from csp_lib.backtrack_util import mrv, forward_checking, first_unassigned_variable, unordered_domain_values, no_inference from backtrack import backtracking_search for puzzle in [easy1, harder1]: s = Sudoku(puzzle) # construct a Sudoku problem print("---initial state---") s.display(s.infer_assignment()) print("\n") AC3(s) print("---after AC3---") s.display(s.infer_assignment()) print("\n") if not s.goal_test(s.curr_domains): solved = backtracking_search(s, select_unassigned_variable=mrv, inference=forward_checking) print("---after backtracking---") s.display(solved)
from csp_lib.sudoku import (Sudoku, easy1, harder1) from constraint_prop import AC3 from csp_lib.backtrack_util import mrv, lcv, mac from backtrack import backtracking_search for puzzle in [easy1, harder1]: sudoku_instance = Sudoku(puzzle) print("We have the following Sudoku puzzle to solve:", end="\n\n") sudoku_instance.display(sudoku_instance.infer_assignment()) print("\nStarting constraint propagation (AC3) algorithm.") AC3(sudoku_instance) print("AC3 algorithm was successfully completed.") if sudoku_instance.goal_test(sudoku_instance.curr_domains): print("Problem was solved by AC3. Here is the solution:", end="\n\n") sudoku_instance.display(sudoku_instance.infer_assignment()) print() else: print("Problem was not solved by AC3. Here is how it looks like:", end="\n\n") sudoku_instance.display(sudoku_instance.infer_assignment()) print() print("We should start searching ...") search_result = backtracking_search(sudoku_instance, mrv, lcv, mac) print("Search has been completed successfully.") if sudoku_instance.goal_test(search_result): print("Given constraint satisfaction problem has been " "successfully solved by backtracking search algorithm. Here " "it the solution:", end='\n\n') sudoku_instance.display(sudoku_instance.infer_assignment())
from csp_lib.sudoku import (Sudoku, easy1, harder1) from constraint_prop import AC3 from csp_lib.backtrack_util import mrv, forward_checking, lcv, mac from backtrack import backtracking_search first = True for puzzle in [easy1, harder1]: if first: s = Sudoku(puzzle) # construct a Sudoku problem easy1 print("Initial State easy") print() s.display(s.infer_assignment()) print() print('Solving the problem...') print() AC3(s) s.display(s.infer_assignment()) print() first = False else: h = Sudoku(puzzle) # construct a Sudoku problem hard1 print("Initial State hard") print() h.display(h.infer_assignment()) print() print('Solving the problem. Apply AC3...') print() AC3(h) print() for var in h.curr_domains:
from csp_lib.sudoku import (Sudoku, easy1, harder1) from constraint_prop import AC3 from csp_lib.backtrack_util import mrv from backtrack import backtracking_search for puzzle in [easy1]: easy = Sudoku(easy1) # constructing the easy Sudoku problem print("Easy Sudoku Problem:") easy.display(easy.infer_assignment()) AC3(easy) #Calling Constraint Propagation to solve print("\n") print("After calling AC3:") easy.display(easy.infer_assignment()) if not easy.goal_test(easy.curr_domains): print("\n") print("Backtracking easy problem...") result = backtracking_search(easy, select_unassigned_variable=mrv) if result: print("After backtracking:") easy.display(easy.infer_assignment()) for puzzle in [harder1]: hard = Sudoku(puzzle) # constructing the hard Sudoku problem print("\n") print("Hard Sudoku Problem:") hard.display(hard.infer_assignment()) AC3(hard) #Calling Constraint Propagation to solve
from csp_lib.sudoku import (Sudoku, easy1, harder1) from constraint_prop import AC3 from csp_lib.backtrack_util import mrv, mac from backtrack import backtracking_search import queue for puzzle in [easy1, harder1]: s = Sudoku(puzzle) # construct a Sudoku problem s.display(s.infer_assignment()) constraints_satisfied = AC3( s ) # returns true or false This is to trigger Backtrack_search, Revise alters domains if constraints_satisfied is True: # goal test instead solved = backtracking_search(csp=s, select_unassigned_variable=mrv, inference=mac) if solved is not None: print("backtrack search solution:") s.display(s.infer_assignment()) else: print("This sudoku puzzle is not solvable") else: s.display( s.infer_assignment() ) # will display an updated board, because e was manipulated inside algorithm using revise def # or do I test to see if its solved, # goalstate '''Output . . 3 | . 2 . | 6 . . 9 . . | 3 . 5 | . . 1 . . 1 | 8 . 6 | 4 . . ------+-------+------
Author: Bernice Tuazon Date created: 4/5/2018 Date last modified: 4/12/2018 Python Version: 3.6 ''' #all modules in csp_lib were created by Prof. Marie Roch from San Diego State University from csp_lib.sudoku import (Sudoku, easy1, harder1) #import easy and hard starting puzzles from csp_lib.backtrack_util import (mrv, forward_checking) from backtrack import backtracking_search from constraint_prop import AC3 for puzzle in [easy1, harder1]: s = Sudoku(puzzle) # construct a Sudoku problem s.display(s.infer_assignment()) #print the initial game print("\n") if AC3(s): #first try using AC-3 to solve the puzzle if s.goal_test(s.curr_domains): #easy1 puzzle print("Congratulations, easy game is solved!") s.display(s.infer_assignment()) #display solved puzzle print("\n") else: #harder1 puzzle #solve with backtracking search and by using the minimum-remaining-values heuristic #to choose the next unassigned variable solved = backtracking_search(s, select_unassigned_variable=mrv, inference=forward_checking) if solved is None: #backtracking_search failed
from csp_lib.sudoku import (Sudoku, easy1, harder1) from constraint_prop import AC3 from csp_lib.backtrack_util import mrv from backtrack import backtracking_search for puzzle in [easy1, harder1]: s = Sudoku(puzzle) # construct a Sudoku problem # display initial state print("\nSudoku puzzle initial state") s.display(s.infer_assignment()) # run constraint satisfaction arc consistency AC3(s) # iterate through variables and add them to puzzle if possible for val in s.domains: if len(s.domains[val]) == 1: s.suppose(val, s.domains[val][0]) # display state after AC3 print("\nSudoku puzzle state after AC3") s.display(s.infer_assignment()) # check if goal has been reached by AC3 if not s.goal_test(s.curr_domains): # run backtracking search if domains need work solved = backtracking_search(s) print("\nSudoku state after AC3 and backtracking search") s.display(s.infer_assignment())
def play(): # get from sudoku.py easy1 = '..3.2.6..9..3.5..1..18.64....81.29..7.......8..67.82....26.95..8..2.3..9..5.1.3..' harder1 = '4173698.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......' for puzzle in [easy1, harder1]: # for puzzle in [easy1]: s = Sudoku(puzzle) # Initial sudoku state print("\nInitial problem:") s.display(s.infer_assignment()) # The state of the puzzle after running AC3. AC3(s) if s.goal_test(s.curr_domains): print("\nAfter AC3 constraint propagation\n") s.display(s.infer_assignment()) # if goal test fail try to find solution elif not s.goal_test(s.curr_domains): # run back track search solution = backtracking_search(s, select_unassigned_variable=mrv) if solution: print("\nSolved using backtracking:") s.display(s.infer_assignment()) else: print("\nCould not be solved using backtrack\n") s.display(s.infer_assignment())