Beispiel #1
0
def load_info(f_name):
    """
    loads the header, header_length and number of data columns in a file

    arguments:
        f_name:     <*.csv> (string) the name of the file

    return values:
        n_cols:     (int) the number of columns
        h_len:      (int) the number of rows in the header
        header:     (((string) list) list) a list of the list of the strings in
                each "cell" of the header
    """
    f_stream = open(f_name, "r")
    h_len = 0
    n_cols = 0
    header = []
    while True:
        line = f_stream.readline()
        if line == "" or line == "\n":
            break
        segs = line.split(',')
        try:
            csvd.string_to_datetime(segs[0])
            break
        except (ValueError, AttributeError):
            header.append(segs)
        h_len += 1
    n_cols = len(header[-1])
    f_stream.close()
    return n_cols, h_len, header
Beispiel #2
0
 def load_csv_file_opti(self):
     """
     a faster load file
     """
     for idx in range(self.m_numcols):
         self.m_datacols.append([])
         
     f_stream = open(self.m_name, "rb")
     f_stream.seek(-2,2)
     while f_stream.read(1) != "\n":
         f_stream.seek(-2,1)
     line = f_stream.readline()
     if line.strip() == "":
         return
     if line[:line.find(',')] == self.m_header[-1][0]:
         return    
     cells = line.split(",")
     for col in range(len(cells)):
         if col == 0:
             self.m_datacols[col].append(csvd.string_to_datetime(cells[col]))
         else:
             self.m_datacols[col].append(float(cells[col]))
     f_stream.close()
     #store last date in the file
     try:
         self.m_last_init_date = self.m_datacols[0][-1]
     except IndexError:
         pass
Beispiel #3
0
def load_file_to_plot(f_name, skip = 4):
    """
        loads a array of a datetime.datetime object and an array of 
    coorisponding values
    
    arguments
        f_name:     (string)the file name
        skip:       (int) number of rows to skip (defaluts to 4 the data logger
                header length)
    """    
    date_string , value = numpy.loadtxt(f_name, 
                    dtype = {'names':('date' , 'val'),'formats':('S100','f4')},
                    delimiter=',', usecols=(0 , 1), skiprows=skip, unpack=True)
    date = []
    for items in date_string:
        date.append(csvd.string_to_datetime(items))

    date = numpy.array(date)
    return date, value
Beispiel #4
0
    def load_csv_file(self):
        """
            loads a csv file replaces the csv_utitlies version
        """
        f_stream = open(self.m_name, "r")   
        f_text = f_stream.read()
        f_stream.close()
        rows = f_text.replace("\r","").split("\n")

        

        for idx in range(self.m_numcols):
            self.m_datacols.append([])

        
        
        if len(rows) == self.m_headlen:
            return

       
        for item in rows[self.m_headlen:]:
            if item == "":
                continue
            cells = item.split(",")
            for col in range(len(cells)):
                if col == 0:
                    self.m_datacols[col].\
                        append(csvd.string_to_datetime(cells[col]))
                else:
                    try:
                        self.m_datacols[col].append(float(cells[col]))
                    except ValueError:
                        self.m_datacols[col].append(str(cells[col]))
        #store last date in the file
        try:
            self.m_last_init_date = self.m_datacols[0][-1]
        except IndexError:
            pass