def test_read_table(tmp_path):

    # write a simple hdf5 file using

    container = ReconstructedEnergyContainer()
    filename = tmp_path / "test_astropy_table.h5"

    with HDF5TableWriter(filename) as writer:
        for energy in np.logspace(1, 2, 10) * u.TeV:
            container.energy = energy
            writer.write("events", container)

    # try opening the result
    table = read_table(filename, "/events")

    assert "energy" in table.columns
    assert table["energy"].unit == u.TeV
    assert "CTAPIPE_VERSION" in table.meta
    assert table["energy"].description is not None

    # test using a string
    table = read_table(str(filename), "/events")

    # test write the table back out to some other format:
    table.write(tmp_path / "test_output.ecsv")
    table.write(tmp_path / "test_output.fits.gz")

    # test using a file handle
    with tables.open_file(filename) as handle:
        table = read_table(handle, "/events")

    # test a bad input
    with pytest.raises(ValueError):
        table = read_table(12345, "/events")
Beispiel #2
0
    def test_image_prediction(self):
        pixel_x = np.array([0]) * u.deg
        pixel_y = np.array([0]) * u.deg

        image = np.array([1])
        pixel_area = np.array([1]) * u.deg * u.deg

        self.impact_reco.set_event_properties(
            {1: image},
            {1: pixel_x},
            {1: pixel_y},
            {1: pixel_area},
            {1: "CHEC"},
            {1: 0 * u.m},
            {1: 0 * u.m},
            array_direction=[0 * u.deg, 0 * u.deg],
        )

        """First check image prediction by directly accessing the function"""
        pred = self.impact_reco.image_prediction(
            "CHEC",
            zenith=0,
            azimuth=0,
            energy=1,
            impact=50,
            x_max=0,
            pix_x=pixel_x,
            pix_y=pixel_y,
        )

        assert np.sum(pred) != 0

        """Then check helper function gives the same answer"""
        shower = ReconstructedShowerContainer()
        shower.is_valid = True
        shower.alt = 0 * u.deg
        shower.az = 0 * u.deg
        shower.core_x = 0 * u.m
        shower.core_y = 100 * u.m
        shower.h_max = 300 + 93 * np.log10(1)

        energy = ReconstructedEnergyContainer()
        energy.is_valid = True
        energy.energy = 1 * u.TeV
        pred2 = self.impact_reco.get_prediction(
            1, shower_reco=shower, energy_reco=energy
        )
        print(pred, pred2)
        assert pred.all() == pred2.all()
Beispiel #3
0
def test_condition(tmp_path):
    # write a simple hdf5 file using

    container = ReconstructedEnergyContainer()
    filename = tmp_path / "test_astropy_table.h5"

    with HDF5TableWriter(filename) as writer:
        for energy in [np.nan, 100, np.nan, 50, -1.0] * u.TeV:
            container.energy = energy
            writer.write("events", container)

    # try opening the result
    table = read_table(filename, "/events", condition="energy > 0")
    assert len(table) == 2
    assert np.all(table["energy"] == [100, 50] * u.TeV)
Beispiel #4
0
    def predict(self, shower_seed, energy_seed):
        """Predict method for the ImPACT reconstructor.
        Used to calculate the reconstructed ImPACT shower geometry and energy.

        Parameters
        ----------
        shower_seed: ReconstructedShowerContainer
            Seed shower geometry to be used in the fit
        energy_seed: ReconstructedEnergyContainer
            Seed energy to be used in fit

        Returns
        -------
        ReconstructedShowerContainer, ReconstructedEnergyContainer:
        """
        self.reset_interpolator()

        horizon_seed = SkyCoord(az=shower_seed.az,
                                alt=shower_seed.alt,
                                frame=AltAz())
        nominal_seed = horizon_seed.transform_to(self.nominal_frame)

        source_x = nominal_seed.fov_lon.to_value(u.rad)
        source_y = nominal_seed.fov_lat.to_value(u.rad)
        ground = GroundFrame(x=shower_seed.core_x,
                             y=shower_seed.core_y,
                             z=0 * u.m)
        tilted = ground.transform_to(
            TiltedGroundFrame(pointing_direction=self.array_direction))
        tilt_x = tilted.x.to(u.m).value
        tilt_y = tilted.y.to(u.m).value
        zenith = 90 * u.deg - self.array_direction.alt

        seeds = spread_line_seed(
            self.hillas_parameters,
            self.tel_pos_x,
            self.tel_pos_y,
            source_x,
            source_y,
            tilt_x,
            tilt_y,
            energy_seed.energy.value,
            shift_frac=[1],
        )[0]

        # Perform maximum likelihood fit
        fit_params, errors, like = self.minimise(
            params=seeds[0],
            step=seeds[1],
            limits=seeds[2],
            minimiser_name=self.minimiser_name,
        )

        # Create a container class for reconstructed shower
        shower_result = ReconstructedGeometryContainer()

        # Convert the best fits direction and core to Horizon and ground systems and
        # copy to the shower container
        nominal = SkyCoord(
            fov_lon=fit_params[0] * u.rad,
            fov_lat=fit_params[1] * u.rad,
            frame=self.nominal_frame,
        )
        horizon = nominal.transform_to(AltAz())

        shower_result.alt, shower_result.az = horizon.alt, horizon.az
        tilted = TiltedGroundFrame(
            x=fit_params[2] * u.m,
            y=fit_params[3] * u.m,
            pointing_direction=self.array_direction,
        )
        ground = project_to_ground(tilted)

        shower_result.core_x = ground.x
        shower_result.core_y = ground.y

        shower_result.is_valid = True

        # Currently no errors not available to copy NaN
        shower_result.alt_uncert = np.nan
        shower_result.az_uncert = np.nan
        shower_result.core_uncert = np.nan

        # Copy reconstructed Xmax
        shower_result.h_max = fit_params[5] * self.get_shower_max(
            fit_params[0],
            fit_params[1],
            fit_params[2],
            fit_params[3],
            zenith.to(u.rad).value,
        )

        shower_result.h_max *= np.cos(zenith)
        shower_result.h_max_uncert = errors[5] * shower_result.h_max

        shower_result.goodness_of_fit = like

        # Create a container class for reconstructed energy
        energy_result = ReconstructedEnergyContainer()
        # Fill with results
        energy_result.energy = fit_params[4] * u.TeV
        energy_result.energy_uncert = errors[4] * u.TeV
        energy_result.is_valid = True

        return shower_result, energy_result