Beispiel #1
0
    def test_image_prediction(self):
        pixel_x = np.array([0]) * u.deg
        pixel_y = np.array([0]) * u.deg

        image = np.array([1])
        pixel_area = np.array([1]) * u.deg * u.deg

        self.impact_reco.set_event_properties(
            {1: image},
            {1: pixel_x},
            {1: pixel_y},
            {1: pixel_area},
            {1: "CHEC"},
            {1: 0 * u.m},
            {1: 0 * u.m},
            array_direction=[0 * u.deg, 0 * u.deg],
        )

        """First check image prediction by directly accessing the function"""
        pred = self.impact_reco.image_prediction(
            "CHEC",
            zenith=0,
            azimuth=0,
            energy=1,
            impact=50,
            x_max=0,
            pix_x=pixel_x,
            pix_y=pixel_y,
        )

        assert np.sum(pred) != 0

        """Then check helper function gives the same answer"""
        shower = ReconstructedShowerContainer()
        shower.is_valid = True
        shower.alt = 0 * u.deg
        shower.az = 0 * u.deg
        shower.core_x = 0 * u.m
        shower.core_y = 100 * u.m
        shower.h_max = 300 + 93 * np.log10(1)

        energy = ReconstructedEnergyContainer()
        energy.is_valid = True
        energy.energy = 1 * u.TeV
        pred2 = self.impact_reco.get_prediction(
            1, shower_reco=shower, energy_reco=energy
        )
        print(pred, pred2)
        assert pred.all() == pred2.all()
Beispiel #2
0
    def predict(self, hillas_dict, inst, array_pointing, telescopes_pointings=None):
        """

        Parameters
        ----------
        hillas_dict: dict
            Dictionary containing Hillas parameters for all telescopes
            in reconstruction
        inst : ctapipe.io.InstrumentContainer
            instrumental description
        array_pointing: SkyCoord[AltAz]
            pointing direction of the array
        telescopes_pointings: dict[SkyCoord[AltAz]]
            dictionary of pointing direction per each telescope

        Returns
        -------
        ReconstructedShowerContainer:

        """

        # filter warnings for missing obs time. this is needed because MC data has no obs time
        warnings.filterwarnings(action='ignore', category=MissingFrameAttributeWarning)

        # stereoscopy needs at least two telescopes
        if len(hillas_dict) < 2:
            raise TooFewTelescopesException(
                "need at least two telescopes, have {}"
                .format(len(hillas_dict)))

        # check for np.nan or 0 width's as these screw up weights
        if any([np.isnan(hillas_dict[tel]['width'].value) for tel in hillas_dict]):
            raise InvalidWidthException(
                "A HillasContainer contains an ellipse of width==np.nan")

        if any([hillas_dict[tel]['width'].value == 0 for tel in hillas_dict]):
            raise InvalidWidthException(
                "A HillasContainer contains an ellipse of width==0")

        if telescopes_pointings is None:
            telescopes_pointings = {tel_id: array_pointing for tel_id in hillas_dict.keys()}

        tilted_frame = TiltedGroundFrame(pointing_direction=array_pointing)

        ground_positions = inst.subarray.tel_coords
        grd_coord = GroundFrame(x=ground_positions.x,
                                y=ground_positions.y,
                                z=ground_positions.z)

        tilt_coord = grd_coord.transform_to(tilted_frame)

        tel_x = {tel_id: tilt_coord.x[tel_id-1] for tel_id in list(hillas_dict.keys())}
        tel_y = {tel_id: tilt_coord.y[tel_id-1] for tel_id in list(hillas_dict.keys())}

        nom_frame = NominalFrame(origin=array_pointing)

        hillas_dict_mod = copy.deepcopy(hillas_dict)

        for tel_id, hillas in hillas_dict_mod.items():
            # prevent from using rads instead of meters as inputs
            assert hillas.x.to(u.m).unit == u.Unit('m')

            focal_length = inst.subarray.tel[tel_id].optics.equivalent_focal_length

            camera_frame = CameraFrame(
                telescope_pointing=telescopes_pointings[tel_id],
                focal_length=focal_length,
            )
            cog_coords = SkyCoord(x=hillas.x, y=hillas.y, frame=camera_frame)
            cog_coords_nom = cog_coords.transform_to(nom_frame)
            hillas.x = cog_coords_nom.delta_alt
            hillas.y = cog_coords_nom.delta_az

        src_x, src_y, err_x, err_y = self.reconstruct_nominal(hillas_dict_mod)
        core_x, core_y, core_err_x, core_err_y = self.reconstruct_tilted(
            hillas_dict_mod, tel_x, tel_y)

        err_x *= u.rad
        err_y *= u.rad

        nom = SkyCoord(
            delta_az=src_x * u.rad,
            delta_alt=src_y * u.rad,
            frame=nom_frame
        )
        # nom = sky_pos.transform_to(nom_frame)
        sky_pos = nom.transform_to(array_pointing.frame)

        result = ReconstructedShowerContainer()
        result.alt = sky_pos.altaz.alt.to(u.rad)
        result.az = sky_pos.altaz.az.to(u.rad)

        tilt = SkyCoord(
            x=core_x * u.m,
            y=core_y * u.m,
            frame=tilted_frame,
        )
        grd = project_to_ground(tilt)
        result.core_x = grd.x
        result.core_y = grd.y

        x_max = self.reconstruct_xmax(
            nom.delta_az,
            nom.delta_alt,
            tilt.x, tilt.y,
            hillas_dict_mod,
            tel_x, tel_y,
            90 * u.deg - array_pointing.alt,
        )

        result.core_uncert = np.sqrt(core_err_x**2 + core_err_y**2) * u.m

        result.tel_ids = [h for h in hillas_dict_mod.keys()]
        result.average_intensity = np.mean([h.intensity for h in hillas_dict_mod.values()])
        result.is_valid = True

        src_error = np.sqrt(err_x**2 + err_y**2)
        result.alt_uncert = src_error.to(u.rad)
        result.az_uncert = src_error.to(u.rad)
        result.h_max = x_max
        result.h_max_uncert = np.nan
        result.goodness_of_fit = np.nan

        return result