Beispiel #1
0
def test_stress_test_slic():
    lengths = range(100, 200, 3)
    for i in range(len(lengths)):
        n_segments = lengths[i] ** 3 / 10 ** 3
        blob = data.binary_blobs(length=lengths[i], n_dim=3, seed=2)
        blob = np.float32(blob)
        slic(blob, n_segments=n_segments, compactness=2)
Beispiel #2
0
def test_cherry_picked_results_without_enforce_connectivity():
    # fmt: off
    plane = [[1,1,0,0],
             [1,1,0,0],
             [1,1,1,1],
             [1,1,1,1]]

    vol = np.asarray([plane, plane, plane])
    expected = np.array([[[3, 3, 2, 2],
                          [3, 3, 2, 2],
                          [3, 3, 4, 4],
                          [3, 3, 4, 4]],

                          [[3, 3, 2, 2],
                           [3, 3, 2, 2],
                           [3, 3, 4, 4],
                           [3, 3, 4, 4]],

                          [[3, 3, 2, 2],
                           [3, 3, 2, 2],
                           [3, 3, 4, 4],
                           [3, 3, 4, 4]]])
    # fmt: on
    labels = slic(
        vol,
        n_segments=2,
        compactness=0.1,
        multichannel=False,
        enforce_connectivity=False,
    )
    assert (labels == expected).all()
Beispiel #3
0
def test_slic_raises_value_error_when_input_dimention_more_than_4():

    blob = data.binary_blobs(length=33, n_dim=5, seed=2)
    blob = np.float32(blob)

    with pytest.raises(ValueError):
        labels = slic(blob, n_segments=100, compactness=3)
Beispiel #4
0
def test_slic_3channels_give_good_number_of_superpixels():
    blob = data.binary_blobs(length=33, n_dim=4, seed=2)
    blob = blob[:3]
    blob = filters.gaussian(blob)
    blob = img_as_float32(blob)
    labels = slic(blob, n_segments=100, compactness=3)
    assert len(np.unique(labels)) < 500
Beispiel #5
0
def test_slic_3channels_runs():
    blob = data.binary_blobs(length=50, n_dim=4, seed=2)
    blob = blob[..., :3]
    blob = filters.gaussian(blob)
    blob = img_as_float32(blob)
    labels = slic(blob, n_segments=100, multichannel=False, compactness=3)
    assert isinstance(labels, np.ndarray)
    assert labels.ndim == 3
Beispiel #6
0
def test_slic_with_saved_results():
    n = 200
    blob = data.binary_blobs(length=n, n_dim=3, seed=2)
    blob = np.float32(blob)
    n_segments = n**3 // 5**3  # 5x5x5 initial segment size
    labels = slic(
        blob,
        n_segments=n_segments,
        compactness=0.01,
        multichannel=False,
        enforce_connectivity=True,
    )
    expected = np.load("tests/test_big_data.npy")
    assert (labels == expected).all()
Beispiel #7
0
    def __init__(self, img, ROI, region_size=50, compactness=5):

        h, w = img.shape[0:2]
        img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
        img = cv2.GaussianBlur(img, (3, 3), 0)
        n_segment = int((h * w) / (region_size**2))
        labels = slic(img, n_segment, compactness=compactness)
        contour_mask = find_boundaries(labels)
        contour_mask[ROI == 0] = 0

        labels[ROI == 0] = -1
        self.labels_position = self.__get_labels_position(labels)

        self.__remap_labels(labels)

        self.labels = labels
        self.numOfPixel = np.max(labels) + 1
        self.contour_mask = contour_mask
Beispiel #8
0
    def __init__(self, img, ROI, region_size=50):

        h, w = img.shape[0:2]
        img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
        img = cv2.GaussianBlur(img, (3, 3), 0)
        n_segment = int((h * w) / (region_size**2))
        labels = slic(img, n_segment, compactness=10)
        contour_mask = find_boundaries(labels)
        contour_mask[ROI == 0] = 0

        labels[ROI == 0] = -1
        print(f'finished slic')
        self.labels_position = self.__get_labels_position(labels)
        print(f'finished get position')

        self.__remap_labels(labels)
        print(f'finished get position')

        self.labels = labels
        self.numOfPixel = np.max(labels) + 1
        self.contour_mask = contour_mask
        self.adjacent_pairs = self.__construct_adjacency(labels)
Beispiel #9
0
def test_slic_grayscale_runs():
    blob = data.binary_blobs(length=50, n_dim=3, seed=2)
    blob = img_as_float32(blob)
    labels = slic(blob, n_segments=100, multichannel=False, compactness=3)
    assert isinstance(labels, np.ndarray)
    assert labels.ndim == 3
Beispiel #10
0
def test_slic_grayscale_give_good_number_of_superpixels():
    blob = data.binary_blobs(length=50, n_dim=3, seed=2)
    blob = img_as_float32(blob)
    labels = slic(blob, n_segments=100, multichannel=False, compactness=3)
    assert len(np.unique(labels)) < 150