Beispiel #1
0
def qr(a, mode='reduced'):
    """QR decomposition.

    Decompose a given two-dimensional matrix into ``Q * R``, where ``Q``
    is an orthonormal and ``R`` is an upper-triangular matrix.

    Args:
        a (cupy.ndarray): The input matrix.
        mode (str): The mode of decomposition. Currently 'reduced',
            'complete', 'r', and 'raw' modes are supported. The default mode
            is 'reduced', in which matrix ``A = (M, N)`` is decomposed into
            ``Q``, ``R`` with dimensions ``(M, K)``, ``(K, N)``, where
            ``K = min(M, N)``.

    Returns:
        cupy.ndarray, or tuple of ndarray:
            Although the type of returned object depends on the mode,
            it returns a tuple of ``(Q, R)`` by default.
            For details, please see the document of :func:`numpy.linalg.qr`.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.qr`
    """
    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    _util._assert_cupy_array(a)
    _util._assert_rank2(a)

    if mode not in ('reduced', 'complete', 'r', 'raw'):
        if mode in ('f', 'full', 'e', 'economic'):
            msg = 'The deprecated mode \'{}\' is not supported'.format(mode)
            raise ValueError(msg)
        else:
            raise ValueError('Unrecognized mode \'{}\''.format(mode))

    # support float32, float64, complex64, and complex128
    if a.dtype.char in 'fdFD':
        dtype = a.dtype.char
    else:
        dtype = numpy.promote_types(a.dtype.char, 'f').char

    m, n = a.shape
    mn = min(m, n)
    if mn == 0:
        if mode == 'reduced':
            return cupy.empty((m, 0), dtype), cupy.empty((0, n), dtype)
        elif mode == 'complete':
            return cupy.identity(m, dtype), cupy.empty((m, n), dtype)
        elif mode == 'r':
            return cupy.empty((0, n), dtype)
        else:  # mode == 'raw'
            # compatibility with numpy.linalg.qr
            dtype = numpy.promote_types(dtype, 'd')
            return cupy.empty((n, m), dtype), cupy.empty((0, ), dtype)

    x = a.transpose().astype(dtype, order='C', copy=True)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if dtype == 'f':
        geqrf_bufferSize = cusolver.sgeqrf_bufferSize
        geqrf = cusolver.sgeqrf
    elif dtype == 'd':
        geqrf_bufferSize = cusolver.dgeqrf_bufferSize
        geqrf = cusolver.dgeqrf
    elif dtype == 'F':
        geqrf_bufferSize = cusolver.cgeqrf_bufferSize
        geqrf = cusolver.cgeqrf
    elif dtype == 'D':
        geqrf_bufferSize = cusolver.zgeqrf_bufferSize
        geqrf = cusolver.zgeqrf
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)

    # compute working space of geqrf and solve R
    buffersize = geqrf_bufferSize(handle, m, n, x.data.ptr, n)
    workspace = cupy.empty(buffersize, dtype=dtype)
    tau = cupy.empty(mn, dtype=dtype)
    geqrf(handle, m, n, x.data.ptr, m, tau.data.ptr, workspace.data.ptr,
          buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        geqrf, dev_info)

    if mode == 'r':
        r = x[:, :mn].transpose()
        return _util._triu(r)

    if mode == 'raw':
        if a.dtype.char == 'f':
            # The original numpy.linalg.qr returns float64 in raw mode,
            # whereas the cusolver returns float32. We agree that the
            # following code would be inappropriate, however, in this time
            # we explicitly convert them to float64 for compatibility.
            return x.astype(numpy.float64), tau.astype(numpy.float64)
        elif a.dtype.char == 'F':
            # The same applies to complex64
            return x.astype(numpy.complex128), tau.astype(numpy.complex128)
        return x, tau

    if mode == 'complete' and m > n:
        mc = m
        q = cupy.empty((m, m), dtype)
    else:
        mc = mn
        q = cupy.empty((n, m), dtype)
    q[:n] = x

    # compute working space of orgqr and solve Q
    if dtype == 'f':
        orgqr_bufferSize = cusolver.sorgqr_bufferSize
        orgqr = cusolver.sorgqr
    elif dtype == 'd':
        orgqr_bufferSize = cusolver.dorgqr_bufferSize
        orgqr = cusolver.dorgqr
    elif dtype == 'F':
        orgqr_bufferSize = cusolver.cungqr_bufferSize
        orgqr = cusolver.cungqr
    elif dtype == 'D':
        orgqr_bufferSize = cusolver.zungqr_bufferSize
        orgqr = cusolver.zungqr

    buffersize = orgqr_bufferSize(handle, m, mc, mn, q.data.ptr, m,
                                  tau.data.ptr)
    workspace = cupy.empty(buffersize, dtype=dtype)
    orgqr(handle, m, mc, mn, q.data.ptr, m, tau.data.ptr, workspace.data.ptr,
          buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        orgqr, dev_info)

    q = q[:mc].transpose()
    r = x[:, :mc].transpose()
    return q, _util._triu(r)
Beispiel #2
0
def qr(a, mode='reduced'):
    """QR decomposition.

    Decompose a given two-dimensional matrix into ``Q * R``, where ``Q``
    is an orthonormal and ``R`` is an upper-triangular matrix.

    Args:
        a (cupy.ndarray): The input matrix.
        mode (str): The mode of decomposition. Currently 'reduced',
            'complete', 'r', and 'raw' modes are supported. The default mode
            is 'reduced', in which matrix ``A = (..., M, N)`` is decomposed
            into ``Q``, ``R`` with dimensions ``(..., M, K)``, ``(..., K, N)``,
            where ``K = min(M, N)``.

    Returns:
        cupy.ndarray, or tuple of ndarray:
            Although the type of returned object depends on the mode,
            it returns a tuple of ``(Q, R)`` by default.
            For details, please see the document of :func:`numpy.linalg.qr`.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.qr`
    """
    _util._assert_cupy_array(a)

    if mode not in ('reduced', 'complete', 'r', 'raw'):
        if mode in ('f', 'full', 'e', 'economic'):
            msg = 'The deprecated mode \'{}\' is not supported'.format(mode)
        else:
            msg = 'Unrecognized mode \'{}\''.format(mode)
        raise ValueError(msg)
    if a.ndim > 2:
        return _qr_batched(a, mode)

    # support float32, float64, complex64, and complex128
    dtype, out_dtype = _util.linalg_common_type(a)

    m, n = a.shape
    k = min(m, n)
    if k == 0:
        if mode == 'reduced':
            return cupy.empty((m, 0), out_dtype), cupy.empty((0, n), out_dtype)
        elif mode == 'complete':
            return cupy.identity(m, out_dtype), cupy.empty((m, n), out_dtype)
        elif mode == 'r':
            return cupy.empty((0, n), out_dtype)
        else:  # mode == 'raw'
            return cupy.empty((n, m), out_dtype), cupy.empty((0,), out_dtype)

    x = a.transpose().astype(dtype, order='C', copy=True)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if dtype == 'f':
        geqrf_bufferSize = cusolver.sgeqrf_bufferSize
        geqrf = cusolver.sgeqrf
    elif dtype == 'd':
        geqrf_bufferSize = cusolver.dgeqrf_bufferSize
        geqrf = cusolver.dgeqrf
    elif dtype == 'F':
        geqrf_bufferSize = cusolver.cgeqrf_bufferSize
        geqrf = cusolver.cgeqrf
    elif dtype == 'D':
        geqrf_bufferSize = cusolver.zgeqrf_bufferSize
        geqrf = cusolver.zgeqrf
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)

    # compute working space of geqrf and solve R
    buffersize = geqrf_bufferSize(handle, m, n, x.data.ptr, n)
    workspace = cupy.empty(buffersize, dtype=dtype)
    tau = cupy.empty(k, dtype=dtype)
    geqrf(handle, m, n, x.data.ptr, m,
          tau.data.ptr, workspace.data.ptr, buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        geqrf, dev_info)

    if mode == 'r':
        r = x[:, :k].transpose()
        return _util._triu(r).astype(out_dtype, copy=False)

    if mode == 'raw':
        return (
            x.astype(out_dtype, copy=False),
            tau.astype(out_dtype, copy=False))

    if mode == 'complete' and m > n:
        mc = m
        q = cupy.empty((m, m), dtype)
    else:
        mc = k
        q = cupy.empty((n, m), dtype)
    q[:n] = x

    # compute working space of orgqr and solve Q
    if dtype == 'f':
        orgqr_bufferSize = cusolver.sorgqr_bufferSize
        orgqr = cusolver.sorgqr
    elif dtype == 'd':
        orgqr_bufferSize = cusolver.dorgqr_bufferSize
        orgqr = cusolver.dorgqr
    elif dtype == 'F':
        orgqr_bufferSize = cusolver.cungqr_bufferSize
        orgqr = cusolver.cungqr
    elif dtype == 'D':
        orgqr_bufferSize = cusolver.zungqr_bufferSize
        orgqr = cusolver.zungqr

    buffersize = orgqr_bufferSize(
        handle, m, mc, k, q.data.ptr, m, tau.data.ptr)
    workspace = cupy.empty(buffersize, dtype=dtype)
    orgqr(
        handle, m, mc, k, q.data.ptr, m, tau.data.ptr, workspace.data.ptr,
        buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        orgqr, dev_info)

    q = q[:mc].transpose()
    r = x[:, :mc].transpose()
    return (
        q.astype(out_dtype, copy=False),
        _util._triu(r).astype(out_dtype, copy=False))