Beispiel #1
0
def affine_transform(input,
                     matrix,
                     offset=0.0,
                     output_shape=None,
                     output=None,
                     order=3,
                     mode='constant',
                     cval=0.0,
                     prefilter=True,
                     *,
                     texture_memory=False):
    """Apply an affine transformation.

    Given an output image pixel index vector ``o``, the pixel value is
    determined from the input image at position
    ``cupy.dot(matrix, o) + offset``.

    Args:
        input (cupy.ndarray): The input array.
        matrix (cupy.ndarray): The inverse coordinate transformation matrix,
            mapping output coordinates to input coordinates. If ``ndim`` is the
            number of dimensions of ``input``, the given matrix must have one
            of the following shapes:

                - ``(ndim, ndim)``: the linear transformation matrix for each
                  output coordinate.
                - ``(ndim,)``: assume that the 2D transformation matrix is
                  diagonal, with the diagonal specified by the given value.
                - ``(ndim + 1, ndim + 1)``: assume that the transformation is
                  specified using homogeneous coordinates. In this case, any
                  value passed to ``offset`` is ignored.
                - ``(ndim, ndim + 1)``: as above, but the bottom row of a
                  homogeneous transformation matrix is always
                  ``[0, 0, ..., 1]``, and may be omitted.

        offset (float or sequence): The offset into the array where the
            transform is applied. If a float, ``offset`` is the same for each
            axis. If a sequence, ``offset`` should contain one value for each
            axis.
        output_shape (tuple of ints): Shape tuple.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation, default is 3. Must
            be in the range 0-5.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``,
            ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``).
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.
        texture_memory (bool): If True, uses GPU texture memory. Supports only:

            - 2D and 3D float32 arrays as input
            - ``(ndim + 1, ndim + 1)`` homogeneous float32 transformation
                matrix
            - ``mode='constant'`` and ``mode='nearest'``
            - ``order=0`` (nearest neighbor) and ``order=1`` (linear
                interpolation)

    Returns:
        cupy.ndarray or None:
            The transformed input. If ``output`` is given as a parameter,
            ``None`` is returned.

    .. seealso:: :func:`scipy.ndimage.affine_transform`
    """

    if texture_memory:
        tm_interp = 'linear' if order > 0 else 'nearest'
        return _texture.affine_transformation(data=input,
                                              transformation_matrix=matrix,
                                              output_shape=output_shape,
                                              output=output,
                                              interpolation=tm_interp,
                                              mode=mode,
                                              border_value=cval)

    _check_parameter('affine_transform', order, mode)

    offset = _util._fix_sequence_arg(offset, input.ndim, 'offset', float)

    if matrix.ndim not in [1, 2] or matrix.shape[0] < 1:
        raise RuntimeError('no proper affine matrix provided')
    if matrix.ndim == 2:
        if matrix.shape[0] == matrix.shape[1] - 1:
            offset = matrix[:, -1]
            matrix = matrix[:, :-1]
        elif matrix.shape[0] == input.ndim + 1:
            offset = matrix[:-1, -1]
            matrix = matrix[:-1, :-1]
        if matrix.shape != (input.ndim, input.ndim):
            raise RuntimeError('improper affine shape')

    if mode == 'opencv':
        m = cupy.zeros((input.ndim + 1, input.ndim + 1))
        m[:-1, :-1] = matrix
        m[:-1, -1] = offset
        m[-1, -1] = 1
        m = cupy.linalg.inv(m)
        m[:2] = cupy.roll(m[:2], 1, axis=0)
        m[:2, :2] = cupy.roll(m[:2, :2], 1, axis=1)
        matrix = m[:-1, :-1]
        offset = m[:-1, -1]

    if output_shape is None:
        output_shape = input.shape

    if mode == 'opencv' or mode == '_opencv_edge':
        if matrix.ndim == 1:
            matrix = cupy.diag(matrix)
        coordinates = cupy.indices(output_shape, dtype=cupy.float64)
        coordinates = cupy.dot(matrix, coordinates.reshape((input.ndim, -1)))
        coordinates += cupy.expand_dims(cupy.asarray(offset), -1)
        ret = _util._get_output(output, input, shape=output_shape)
        ret[:] = map_coordinates(input, coordinates, ret.dtype, order, mode,
                                 cval, prefilter).reshape(output_shape)
        return ret

    matrix = matrix.astype(cupy.float64, copy=False)
    ndim = input.ndim
    output = _util._get_output(output, input, shape=output_shape)
    if input.dtype.kind in 'iu':
        input = input.astype(cupy.float32)
    filtered, nprepad = _filter_input(input, prefilter, mode, cval, order)

    integer_output = output.dtype.kind in 'iu'
    _util._check_cval(mode, cval, integer_output)
    large_int = max(_prod(input.shape), _prod(output_shape)) > 1 << 31
    if matrix.ndim == 1:
        offset = cupy.asarray(offset, dtype=cupy.float64)
        offset = -offset / matrix
        kern = _interp_kernels._get_zoom_shift_kernel(
            ndim,
            large_int,
            output_shape,
            mode,
            cval=cval,
            order=order,
            integer_output=integer_output,
            nprepad=nprepad)
        kern(filtered, offset, matrix, output)
    else:
        kern = _interp_kernels._get_affine_kernel(
            ndim,
            large_int,
            output_shape,
            mode,
            cval=cval,
            order=order,
            integer_output=integer_output,
            nprepad=nprepad)
        m = cupy.zeros((ndim, ndim + 1), dtype=cupy.float64)
        m[:, :-1] = matrix
        m[:, -1] = cupy.asarray(offset, dtype=cupy.float64)
        kern(filtered, m, output)
    return output
Beispiel #2
0
def affine_transform(input,
                     matrix,
                     offset=0.0,
                     output_shape=None,
                     output=None,
                     order=None,
                     mode='constant',
                     cval=0.0,
                     prefilter=True):
    """Apply an affine transformation.

    Given an output image pixel index vector ``o``, the pixel value is
    determined from the input image at position
    ``cupy.dot(matrix, o) + offset``.

    Args:
        input (cupy.ndarray): The input array.
        matrix (cupy.ndarray): The inverse coordinate transformation matrix,
            mapping output coordinates to input coordinates. If ``ndim`` is the
            number of dimensions of ``input``, the given matrix must have one
            of the following shapes:

                - ``(ndim, ndim)``: the linear transformation matrix for each
                  output coordinate.
                - ``(ndim,)``: assume that the 2D transformation matrix is
                  diagonal, with the diagonal specified by the given value.
                - ``(ndim + 1, ndim + 1)``: assume that the transformation is
                  specified using homogeneous coordinates. In this case, any
                  value passed to ``offset`` is ignored.
                - ``(ndim, ndim + 1)``: as above, but the bottom row of a
                  homogeneous transformation matrix is always
                  ``[0, 0, ..., 1]``, and may be omitted.

        offset (float or sequence): The offset into the array where the
            transform is applied. If a float, ``offset`` is the same for each
            axis. If a sequence, ``offset`` should contain one value for each
            axis.
        output_shape (tuple of ints): Shape tuple.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation. If it is not given,
            order 1 is used. It is different from :mod:`scipy.ndimage` and can
            change in the future. Currently it supports only order 0 and 1.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'`` or ``'opencv'``). Default is ``'constant'``.
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.

    Returns:
        cupy.ndarray or None:
            The transformed input. If ``output`` is given as a parameter,
            ``None`` is returned.

    .. seealso:: :func:`scipy.ndimage.affine_transform`
    """

    _check_parameter('affine_transform', order, mode)

    if not hasattr(offset, '__iter__') and type(offset) is not cupy.ndarray:
        offset = [offset] * input.ndim

    if matrix.ndim not in [1, 2] or matrix.shape[0] < 1:
        raise RuntimeError('no proper affine matrix provided')
    if matrix.ndim == 2:
        if matrix.shape[0] == matrix.shape[1] - 1:
            offset = matrix[:, -1]
            matrix = matrix[:, :-1]
        elif matrix.shape[0] == input.ndim + 1:
            offset = matrix[:-1, -1]
            matrix = matrix[:-1, :-1]
        if matrix.shape != (input.ndim, input.ndim):
            raise RuntimeError("improper affine shape")

    if mode == 'opencv':
        m = cupy.zeros((input.ndim + 1, input.ndim + 1))
        m[:-1, :-1] = matrix
        m[:-1, -1] = offset
        m[-1, -1] = 1
        m = cupy.linalg.inv(m)
        m[:2] = cupy.roll(m[:2], 1, axis=0)
        m[:2, :2] = cupy.roll(m[:2, :2], 1, axis=1)
        matrix = m[:-1, :-1]
        offset = m[:-1, -1]

    if output_shape is None:
        output_shape = input.shape

    matrix = matrix.astype(cupy.float64, copy=False)
    if order is None:
        order = 1
    ndim = input.ndim
    output = _get_output(output, input, shape=output_shape)
    if input.dtype.kind in 'iu':
        input = input.astype(cupy.float32)

    integer_output = output.dtype.kind in 'iu'
    large_int = max(_prod(input.shape), _prod(output_shape)) > 1 << 31
    if matrix.ndim == 1:
        offset = cupy.asarray(offset, dtype=cupy.float64)
        offset = -offset / matrix
        kern = _interp_kernels._get_zoom_shift_kernel(
            ndim,
            large_int,
            output_shape,
            mode,
            cval=cval,
            order=order,
            integer_output=integer_output)
        kern(input, offset, matrix, output)
    else:
        kern = _interp_kernels._get_affine_kernel(
            ndim,
            large_int,
            output_shape,
            mode,
            cval=cval,
            order=order,
            integer_output=integer_output)
        m = cupy.zeros((ndim, ndim + 1), dtype=cupy.float64)
        m[:, :-1] = matrix
        m[:, -1] = cupy.asarray(offset, dtype=cupy.float64)
        kern(input, m, output)
    return output