from os.path import join import torch import torch.optim as optim from torch.utils.tensorboard import SummaryWriter from visualization import plot_piano_roll # from tensorboardX import SummaryWriter # set config # parser = custom.get_argument_parser() # args = parser.parse_args("-m train_model -c config/train.yml") # config.load(args.model_dir, args.configs, initialize=True) # model_dir = r"E:\Github_Projects\music_DeepLearning\MusicTransformer-pytorch\train_model\longer_seq" # configs = [r"E:\Github_Projects\music_DeepLearning\MusicTransformer-pytorch\train_model\longer_seq\train.yml"] model_dir = r"C:\Users\PonceLab\Documents\MusicTransformer-pytorch\train_model\1536_seq" configs = [join(model_dir, r"train.yml")] config.load(model_dir, configs, initialize=False) # check cuda if torch.cuda.is_available(): config.device = torch.device('cuda') else: config.device = torch.device('cpu') # load data dataset = Data(config.pickle_dir) print(dataset) # load model learning_rate = config.l_r # define model
from custom.criterion import SmoothCrossEntropyLoss, CustomSchedule from custom.config import config from data import Data import utils import datetime import time import torch import torch.optim as optim from tensorboardX import SummaryWriter # set config parser = custom.get_argument_parser() args = parser.parse_args() config.load(args.model_dir, args.configs, initialize=True) print("args.model_dir ", args.model_dir) print("args.configs ", args.configs) # check cuda if torch.cuda.is_available(): config.device = torch.device('cuda') else: config.device = torch.device('cpu') # load data dataset = Data(config.pickle_dir) print(dataset) # load model learning_rate = config.l_r
from model import MusicTransformer import custom from custom.config import config import torch parser = custom.get_argument_parser() args = parser.parse_args() config.load(args.model_dir, [args.model_dir + '/save.yml'] + args.configs, initialize=True) # # check cuda # if torch.cuda.is_available(): # config.device = torch.device('cuda') # else: config.device = torch.device('cpu') mt = MusicTransformer(embedding_dim=config.embedding_dim, vocab_size=config.vocab_size, num_layer=config.num_layers, max_seq=config.max_seq, dropout=0, debug=False) mt.load_state_dict(torch.load(args.model_dir + '/final.pth')) mt.test() mt_script = torch.jit.trace(mt, (torch.rand(1, 1), torch.tensor(100))) print(mt_script.code)