Beispiel #1
0
 def write(self, bgrimg):
     fullpath = self.output_folder + os.sep + '%.3d.png' % (self.id_,)
     cv.SaveImage(fullpath, bgrimg)
     self.id_ += 1
Beispiel #2
0
centroid = cvblob.Centroid(bigblobs[bigblob])
print "centroid of blob " + str(bigblob) + " is " + str(centroid)

print "angle of blob " + str(bigblob) + " is " + str(
    cvblob.Angle(blobs[bigblob]))

cvblob.SaveImageBlob("blob_" + str(bigblob) + ".png", img, blobs[bigblob])

print "point x: 250 y: 100 is blob " + str(cvblob.GetLabel(labelImg, 250, 100))

#cvblob.RenderBlob(labelImg, blobs[bigblob], img, rendered, cvblob.CV_BLOB_RENDER_COLOR|cvblob.CV_BLOB_RENDER_CENTROID|cvblob.CV_BLOB_RENDER_BOUNDING_BOX|cvblob.CV_BLOB_RENDER_ANGLE, cv.RGB(0,0,255), 0.9)
#cvblob.RenderBlob(labelImg, blobs[1], img, rendered, cvblob.CV_BLOB_RENDER_COLOR|cvblob.CV_BLOB_RENDER_CENTROID|cvblob.CV_BLOB_RENDER_BOUNDING_BOX|cvblob.CV_BLOB_RENDER_ANGLE, cv.RGB(255,0,255))
#cvblob.RenderBlob(labelImg, blobs[bigblob], img, rendered, cvblob.CV_BLOB_RENDER_COLOR|cvblob.CV_BLOB_RENDER_CENTROID|cvblob.CV_BLOB_RENDER_BOUNDING_BOX|cvblob.CV_BLOB_RENDER_ANGLE)
#cvblob.RenderBlob(labelImg, blobs[bigblob], img, rendered)
imgOut = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_8U, 3)
cv.Zero(imgOut)
cvblob.RenderBlobs(
    labelImg, blobs, img, imgOut,
    cvblob.CV_BLOB_RENDER_COLOR | cvblob.CV_BLOB_RENDER_CENTROID
    | cvblob.CV_BLOB_RENDER_BOUNDING_BOX | cvblob.CV_BLOB_RENDER_ANGLE, 1.0)

#cvblob.SetImageROItoBlob(imgOut, blobs[bigblob]);

print "mean color for blob " + str(bigblob) + " is " + str(
    cvblob.BlobMeanColor(blobs[bigblob], labelImg, img))

cv.SaveImage("test_filtered.png", filtered)
cv.SaveImage("test_rendered.png", imgOut)
#draw the rendered blobs on an outline
#cvblob.RenderBlobs(labelImg, blobs, img, imgOut)
# -*- coding: utf-8 -*-
import cv
# import cv2.cv as cv

if __name__ == '__main__':

    # 画像取得
    im = cv.LoadImage("test.jpg")
    # 画像データ用意
    gray = cv.CreateImage(cv.GetSize(im), 8, 1)
    eq = cv.CreateImage(cv.GetSize(gray), 8, 1)
    # ヒストグラム平坦化
    cv.CvtColor(im, gray,cv.CV_BGR2GRAY)
    cv.EqualizeHist(gray, eq)
    # ウィンドウ作成
    cv.NamedWindow("Show Image")
    # 画像表示
    cv.ShowImage("Show Image",eq)
    # キー入力待機
    cv.WaitKey(0)
    # ウィンドウ破棄
    cv.DestroyAllWindows()
    # 画像保存
    cv.SaveImage("eq.jpg",eq)
Beispiel #4
0
import cv
import urllib2
import time
import math

# insert your hipchat auth token!

#grab an image from the camera and save it
capture = cv.CaptureFromCAM(
    -1
)  #-1 will select the first camera available, usually /dev/video0 on linux
cv.SetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_WIDTH, 320)
cv.SetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_HEIGHT, 240)
im = cv.QueryFrame(capture)
cv.SaveImage("/home/pi/dish/capture/sink-latest.jpg", im)

#convert the image to grayscale
edges = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_8U, 1)
cv.CvtColor(im, edges, cv.CV_BGR2GRAY)

#edge detect it, then smooth the edges
thresh = 120
cv.Canny(edges, edges, thresh, thresh / 2, 3)
cv.Smooth(edges, edges, cv.CV_GAUSSIAN, 3, 3)
cv.SaveImage("/home/pi/dish/capture/sink-latest-edges.jpg", edges)

#find the circles
storage = cv.CreateMat(640, 1, cv.CV_32FC3)
cv.HoughCircles(edges, storage, cv.CV_HOUGH_GRADIENT, 2, edges.width / 10,
                thresh, 160, 0, 0)
        cv.SetZero(avg)

        cv.Add(im_downsmpl, sum, sum)

        if len(word_frame_list) > 1:
            for frame in word_frame_list[1:]:
                im = cv.LoadImageM(images_path + capture_date + "/" + frame)
                im = cv.GetSubRect(im, (205, 145, 225, 95))
                cv.ConvertScale(im, im, -1, 255)
                cv.Threshold(im, im, 165, 0, cv.CV_THRESH_TOZERO)
                im_downsmpl = cv.CreateMat(im.rows / downsmpl_factor,
                                           im.cols / downsmpl_factor,
                                           cv.CV_8UC3)
                cv.Resize(im, im_downsmpl)
                cv.Add(im_downsmpl, sum, sum)

        cv.ConvertScale(sum, avg, 1.0)
        #cv.ConvertScale(sum, avg, 1.0/len(word_frame_list))

        print word_list.index(word),
        for i in range(avg.rows):
            for j in range(avg.cols):
                print str(i * avg.cols + j + 1) + ":" + str(avg[i, j][0]),

        print '\n',

        filename = "%s_%02d.jpg" % (word, word_timeline.index(word_instance))
        cv.SaveImage(
            output_path + output_dirname_level_1 + "/" +
            output_dirname_level_2 + "/dataset_images/" + filename, avg)
Beispiel #6
0
    if vc.isOpened():  # try to get the first frame
        rval, frame = vc.read()
    else:
        rval = False

    print "\n\n\n\n\npress space to take picture; press ESC to exit"

    while rval:
        cv2.imshow("preview", frame)
        rval, frame = vc.read()
        key = cv2.waitKey(40)
        if key == 27:  # exit on ESC
            break
        if key == 32:  # press space to save images
            cv.SaveImage("webcam.jpg", cv.fromarray(frame))
            img = cv.LoadImage("webcam.jpg")  # input image
            mouth = m.findmouth(img)
            # show(mouth)
            if mouth != 2:  # did not return error
                mouthimg = crop(mouth)
                cv.SaveImage("webcam-m.jpg", mouthimg)
                # predict the captured emotion
                result = lr.predict(vectorize('webcam-m.jpg'))
                if result == 1:
                    print "you are smiling! :-) "
                else:
                    print "you are not smiling :-| "
            else:
                print "failed to detect mouth. Try hold your head straight and make sure there is only one face."
Beispiel #7
0
#!/usr/bin/python
# -*- coding: utf-8 -*-

import cv
from datetime import datetime

if __name__ == '__main__':
    capture = cv.CaptureFromCAM(0)
    cv.NamedWindow('Webcam')

    while True:
        frame = cv.QueryFrame(capture)
        cv.ShowImage('Webcam', frame)

        c = cv.WaitKey(10) % 256

        if c == 27:
            # ESC pressed. Finish the program
            break
        elif c == 10:
            # ENTER pressed. Store image to disk
            cv.SaveImage("foto" + '.bmp', frame)

    capture = None
    cv.DestroyAllWindows()
Beispiel #8
0
def ndvi_to_file(band3, band4, out_img='tmp/ndvi.tiff'):
	cv.SaveImage(out_img, ndvi(band3, band4))
Beispiel #9
0
    cv.CvtColor(img, bwdst, cv.CV_BGR2GRAY)
    cv.AdaptiveThreshold(bwdst, bwdst, 255.0, cv.CV_THRESH_BINARY,
                         cv.CV_ADAPTIVE_THRESH_MEAN_C, 11)
    cv.Dilate(bwdst, bwdst)
    cv.Erode(bwdst, bwdst)
    return bwdst


def wait():
    while True:
        k = cv.WaitKey(0) % 0x100
        if k == 27:
            break


fname = sys.argv[1]
img = cv.LoadImage(fname)
thresh = threshhold(img)

lines = findLines(thresh)
ang = degrees(avgAngle(lines)) - 90.0
fix_rotation = rotate(thresh, ang)

#we need to convert back to greyscale because ocrfeeder doesn't expect a plain B&W image
cv.ShowImage("rotation fixed", fix_rotation)
color_dst = cv.CreateImage(cv.GetSize(fix_rotation), 8, 3)
cv.CvtColor(fix_rotation, color_dst, cv.CV_GRAY2BGR)

cv.SaveImage("skew_fix.jpg", color_dst)
wait()
cv.CalcOpticalFlowHS(inputImageFirst, inputImageSecond, False, velx, vely, 100.0,(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS,64, 0.01))

for i in range(0, cols, FLOWSKIP):
  for j in range(0, rows, FLOWSKIP):
    dx = int(cv.GetReal2D (velx, j, i))
    dy = int(cv.GetReal2D (vely, j, i))
    cv.Line(desImageHS,(i, j),(i + dx, j + dy), (255, 0, 0), 1, cv.CV_AA, 0)

cv.SetZero (velx)
cv.SetZero (vely)

cv.CalcOpticalFlowLK(inputImageFirst,inputImageSecond,(15,15),velx,vely)

for i in range(0, cols, FLOWSKIP):
  for j in range(0, rows, FLOWSKIP):
    dx = int(cv.GetReal2D (velx, j, i))
    dy = int(cv.GetReal2D (vely, j, i))
    cv.Line(desImageLK,(i, j),(i + dx, j + dy), (255, 0, 0), 1, cv.CV_AA, 0)

cv.SaveImage("resultHS.png", desImageHS)
cv.SaveImage("resultLK.png", desImageLK)

cv.NamedWindow("Optical flow HS")
cv.ShowImage("Optical flow HS", desImageHS)

cv.NamedWindow("Optical flow LK")
cv.ShowImage("Optical flow LK", desImageLK)

cv.WaitKey(0)
cv.DestroyAllWindows()
Beispiel #11
0
def ndvi_to_file(band3_img, band4_img, out_img):
	band3 = cv.LoadImage(band3_img, 0)
	band4 = cv.LoadImage(band4_img, 0)
	for i in [band3, band4]:
		assert i.depth == cv.IPL_DEPTH_8U
	cv.SaveImage(out_img, ndvi(band3, band4))
Beispiel #12
0
    bag_file_name = arguments[0]
    if arguments_size > 1:
        topic_name = arguments[1]
    if arguments_size > 2:
        directory = arguments[2]

    # Open the bag file:
    bag = rosbag.Bag(bag_file_name)
    bridge = CvBridge()

    # Sweep through messages that match *topic_name*:
    index = 0
    previous_time = None
    for topic, msg, t in bag.read_messages(topic_name):
        # Extract *cv_image* in RGB8 mode:
        index += 1
        try:
            cv_image = bridge.imgmsg_to_cv(msg, desired_encoding="rgb8")
        except CvBridgeError, e:
            print e

        # Save the image
        cv.SaveImage("{0}/Image{1:03d}.pnm".format(directory, index), cv_image)

        # Print out time changes:
        if previous_time == None:
            previous_time = t
        dt = t - previous_time
        previous_time = t
        print("[{0}]:{1}".format(index, dt))
Beispiel #13
0
def main():
    import argparse
    import logging
    import os
    import yaml
    import cv

    global processes
    global forest0, svmmodels, training_bosts, hist0

    parser = argparse.ArgumentParser()
    parser.add_argument('classifier')
    parser.add_argument('cores',
                        type=int,
                        help='Number of processes of paralellism')
    parser.add_argument(
        '--postprocess',
        action="store_true",
        help='Run postprocessing, close blobs and remove noise')
    args = parser.parse_args()

    logging.basicConfig(level=logging.WARNING,
                        format="%(asctime)s - %(message)s")

    classifier = zipfile.ZipFile(args.classifier)
    forest0, hist0, forest1, hist1, training_bosts, svmmodels, prior = \
        load_from_classifier(classifier)
    classifier.close()

    processes = args.cores
    pool = Pool(processes=processes)

    KEY_FRAME_PERIOD = 2  # in seconds
    q = Manager().Queue()
    total_frame = 0

    new_flag = True
    while True:
        if not new_flag:
            print "wait..."
            time.sleep(1)
        stream_list = get_list(CLOUDLET_RESOURCE, STREAM_RESOURCE)
        new_flag = False
        prev_stream = None
        for stream in stream_list:
            if stream.get("stream_description").find(
                    "denatured"
            ) == -1 or stream.get("stream_description").find(
                    "video"
            ) == -1 or stream.get("stream_description").find("pstf") != -1:
                prev_stream = stream
                continue
            ILP_max = []
            for i in xrange(len(CLASSES)):
                ILP_max.append(0)
            ILP_list = []
            for i in xrange(len(CLASSES)):
                ILP_list.append([])
            path, name = stream.get("path").replace("mnt",
                                                    "cloudletstore").rsplit(
                                                        '/', 1)
            print os.path.join(path, name)
            path_p, name_p = prev_stream.get("path").replace(
                "mnt", "cloudletstore").rsplit('/', 1)
            print os.path.join(path_p, name_p)
            statinfo = os.stat(os.path.join(path_p, name_p))
            prev_stream = stream

            if statinfo.st_size == 0:
                continue

            new_flag = True
            frame_rate = 30

            capture = cv.CaptureFromFile(os.path.join(path, name))
            frame_rate = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FPS)
            total_frames = cv.GetCaptureProperty(capture,
                                                 cv.CV_CAP_PROP_FRAME_COUNT)
            frame = cv.QueryFrame(capture)
            print frame_rate, total_frames
            print capture

            start_time = time.time()

            key_frame_counter_base = 0
            while frame:
                process_num = 0
                while frame:
                    cv.SaveImage("indexing" + "%d.png" % process_num, frame)
                    for i in xrange(int(KEY_FRAME_PERIOD * frame_rate)):
                        frame = cv.QueryFrame(capture)
                    process_num += 1
                    if process_num == processes:
                        break
                pool.map(
                    calculate_class,
                    [(q, x)
                     for x in xrange(key_frame_counter_base,
                                     key_frame_counter_base + process_num)])

            while not q.empty():
                q_entry = q.get()
                key_frame_counter = q_entry[0]
                ILP = q_entry[1]
                for class_index, score in enumerate(ILP):
                    if score > SCORE_THRESHOLD:
                        ILP_list[class_index].append(
                            (key_frame_counter *
                             int(KEY_FRAME_PERIOD * frame_rate) + 1, score))
                        print(CLASSES[class_index], "%.02f" % score),
                    if score > ILP_max[class_index]:
                        ILP_max[class_index] = score
                print

                key_frame_counter_base += process_num

            for class_index, frame_list in enumerate(ILP_list):
                if not frame_list:
                    continue
                frame_list_split = split_frame_list(
                    frame_list,
                    int(KEY_FRAME_PERIOD * frame_rate) * 2)
                for frame_list, local_max_score in frame_list_split:
                    tag_entry = {}
                    tag_entry["tag"] = CLASSES[class_index] + ":%d" % (
                        ILP_max[class_index] * 100)
                    tag_entry["tag_value"] = local_max_score
                    tag_entry["offset"] = frame_list[0] / frame_rate
                    tag_entry["duration"] = (frame_list[-1] -
                                             frame_list[0]) / frame_rate
                    tag_entry["segment"] = stream.get("segment")
                    print tag_entry
                    ret_dict = post(CLOUDLET_RESOURCE, TAG_RESOURCE, tag_entry)

            if stream.get("stream_description").find("pstf") == -1:
                stream_entry = {
                    "stream_description":
                    stream.get("stream_description") + "pstf;"
                }
                ret_dict = put(CLOUDLET_RESOURCE, stream.get("resource_uri"),
                               stream_entry)

            elapse_time = time.time() - start_time
            print "max score:"
            print[(CLASSES[class_index], "%.02f" % score)
                  for class_index, score in enumerate(ILP_max)]
            print "total time: %.2f, key frames: %d, frame per sec: %.2f" \
               % (elapse_time, key_frame_counter_base, key_frame_counter_base / elapse_time)
            print
Beispiel #14
0
 def store_harddisk(self, filename, image):
     cv.SaveImage(filename, image)
    def Run(self):
        print "start"
        seed()
        maxVal = 0.04
        file_path = "./"
        listener = tf.TransformListener()
        nr_images = 14

        # move components to initial position
        self.sss.move("head", "back")
        self.sss.move("arm", "calib")
        self.sss.move("torso", "home")
        self.sss.move("sdh", "home")

        self.sss.wait_for_input()
        self.sss.move("sdh", "calib")
        self.sss.wait_for_input()

        # start calbration routine
        for i in range(1, nr_images):
            if i == 1:
                r1 = maxVal
                r2 = maxVal
            elif i == 2:
                r1 = -maxVal
                r2 = maxVal
            elif i == 3:
                r1 = maxVal
                r2 = -maxVal
            elif i == 4:
                r1 = -maxVal
                r2 = -maxVal
            else:
                r1 = (random() - 0.5) * 2 * maxVal
                r2 = (random() - 0.5) * 2 * maxVal
            self.sss.move("torso", [[r1, r2, r1, r2]])
            self.sss.sleep(1)
            try:
                (trans,
                 rot) = listener.lookupTransform('/base_link',
                                                 '/head_color_camera_r_link',
                                                 rospy.Time(0))
                rpy = euler_from_quaternion(rot)
                cyaw = cos(rpy[2])
                syaw = sin(rpy[2])
                cpitch = cos(rpy[1])
                spitch = sin(rpy[1])
                croll = cos(rpy[0])
                sroll = sin(rpy[0])
                R11 = cyaw * cpitch
                R12 = cyaw * spitch * sroll - syaw * croll
                R13 = cyaw * spitch * croll + syaw * sroll
                R21 = syaw * cpitch
                R22 = syaw * spitch * sroll + cyaw * croll
                R23 = syaw * spitch * croll - cyaw * sroll
                R31 = -spitch
                R32 = cpitch * sroll
                R33 = cpitch * croll
                fout = open(file_path + 'calpic' + str(i) + '.coords', 'w')
                fout.write(
                    str(R11) + ' ' + str(R12) + ' ' + str(R13) + ' ' +
                    str(trans[0] * 1000) + '\n' + str(R21) + ' ' + str(R22) +
                    ' ' + str(R23) + ' ' + str(trans[1] * 1000) + '\n' +
                    str(R31) + ' ' + str(R32) + ' ' + str(R33) + ' ' +
                    str(trans[2] * 1000))
                fout.close()
            except (tf.LookupException, tf.ConnectivityException):
                print "tf exception"

            self.sss.sleep(1)
            cv.SaveImage(file_path + 'calpic' + str(i) + '.png', self.cv_image)
            self.sss.sleep(1)
        self.sss.move("torso", "home")
        print "finished"
    def savePicture(self):
	filename = strftime("%m-%d-%Y_") + "%.3f" % time()
        cv.SaveImage("pictures/%s.png" % filename, self.currentFrame)
Beispiel #17
0
        it = model.solve()
        del p
        print 'Updated fitting in %i iterations' % it

        # Now plot the estimated distribution against the actual distribution...
        img = numpy.ones((height, width, 3))
        draw = model.sampleMixture()

        for px in xrange(width):
            x = float(px) / float(width) * (high - low) + low

            y_gt = gt.prob([x])
            y_gu = model.prob([x])
            y_gd = 0.0
            for ind, gauss in enumerate(draw[1]):
                y_gd += draw[0][ind] * gauss.prob([x])

            py_gt = int((1.0 - y_gt / scale) * height)
            py_gu = int((1.0 - y_gu / scale) * height)
            py_gd = numpy.clip(int((1.0 - y_gd / scale) * height), 0,
                               height - 1)

            img[py_gt, px, :] = [0.0, 1.0, 0.0]
            img[py_gu, px, :] = [1.0, 0.0, 0.0]
            img[py_gd, px, :] = [0.0, 0.0, 1.0]

        # Save plot out...
        img = cvarray.array2cv(img * 255.0)
        cv.SaveImage('%s/plot_%i.png' % (out_dir, i + 1), img)
        print
Beispiel #18
0
    corner_strengths = sorted(corner_strengths, key=itemgetter(0))
    best_corners = []
    for loopVar2 in range(
            len(corner_strengths) - 1,
            len(corner_strengths) - 1 - N, -1):
        try:
            cv.Circle(orig_img_1, (corner_strengths[loopVar2][1][1],
                                   corner_strengths[loopVar2][1][0]),
                      2, (255, 0, 0),
                      -1,
                      lineType=8,
                      shift=0)
            best_corners.append([
                corner_strengths[loopVar2][1][0],
                corner_strengths[loopVar2][1][1]
            ])
            #print corner_strengths[loopVar2]
        except IndexError:
            pass
    #print best_corners, (orig_img_1.height)/2, (orig_img_1.width)/2
    feature_vectors.append(
        find_feature_vector(best_corners, (orig_img_1.height) / 2,
                            (orig_img_1.width) / 2))
    print feature_vectors[loopVar1], sum(feature_vectors[loopVar1])
    cv.SaveImage(filename2 + str(loopVar1 + 1) + ".jpg",
                 orig_img_1)  #Save the result
save_features(filename3, feature_vectors)
read = readfeatures(filename3)
print read, len(read)
cv2.waitKey(0)  #Wait for key-press'''
# import  cv2.cv as cv
import cv

orig = cv.LoadImage('./demo1.jpg', cv.CV_LOAD_IMAGE_COLOR)
im = cv.CreateImage(cv.GetSize(orig), 8, 1)
cv.CvtColor(orig, im, cv.CV_BGR2GRAY)
#Keep the original in colour to draw contours in the end

cv.Threshold(im, im, 128, 255, cv.CV_THRESH_BINARY)
cv.ShowImage("Threshold 1", im)
cv.SaveImage("threshold1.jpg",im)

element = cv.CreateStructuringElementEx(5*2+1, 5*2+1, 5, 5, cv.CV_SHAPE_RECT)

cv.MorphologyEx(im, im, None, element, cv.CV_MOP_OPEN) #Open and close to make appear contours
cv.MorphologyEx(im, im, None, element, cv.CV_MOP_CLOSE)
cv.Threshold(im, im, 128, 255, cv.CV_THRESH_BINARY_INV)
cv.ShowImage("After MorphologyEx", im)
cv.SaveImage("after.jpg",im)
# --------------------------------

vals = cv.CloneImage(im) #Make a clone because FindContours can modify the image
contours=cv.FindContours(vals, cv.CreateMemStorage(0), cv.CV_RETR_LIST, cv.CV_CHAIN_APPROX_SIMPLE, (0,0))

_red = (0, 0, 255); #Red for external contours
_green = (0, 255, 0);# Gren internal contours
levels=2 #1 contours drawn, 2 internal contours as well, 3 ...
co=cv.DrawContours (orig, contours, _red, _green, levels, 2, cv.CV_FILLED) #Draw contours on the colour image
cv.SaveImage("save.jpg",orig)
# cv.SaveImage("co.jpg",co)
def main():
    os.chdir(sys.argv[1])

    #print "DELETE ALL FILES FIRST!"

    #tree = et.parse("project.xml")
    #movie = tree.getroot()
    #start_frame = int( movie.attrib["start_frame"] )
    #end_frame = int( movie.attrib["end_frame"] )

    f_shots = open("shots.txt")
    shots = [
        (int(start), int(end))
        for start, end in [line.split("\t")[0:2] for line in f_shots if line]
    ]
    f_shots.close()

    f_chapters = open("chapters.txt")
    chapters = [int(line) for line in f_chapters if line]
    f_chapters.close()
    '''# fix first and add last frame
	chapters[0] = start_frame
	chapters.append(end_frame)'''

    os.chdir("shot_colors")
    try:
        os.mkdir(OUTPUT_DIR_NAME)
    except:
        pass

    filenames = glob.glob("shot_colors_*.png")

    last_shot_nr = 0
    ch = 1
    for i, shot in enumerate(shots):
        start_frame, end_frame = shot
        if ch == len(chapters):  # will this ever happen, freder?
            print "den rest noch"
            #print " ".join(filenames[last_shot_nr:])
            os.system("convert %s -append chapters\\chapter_%02d.png" %
                      (" ".join(filenames[last_shot_nr:]), ch))
            break
        elif end_frame >= chapters[ch]:
            #if end_frame >= chapters[ch]:
            print ch, ":", last_shot_nr, "->", i - 1
            print " ".join(filenames[last_shot_nr:i])
            os.system("convert %s -append chapters\\chapter_%02d.png" %
                      (" ".join(filenames[last_shot_nr:i]), ch))
            last_shot_nr = i
            ch += 1

    os.chdir(OUTPUT_DIR_NAME)

    for file_nr, file in enumerate(os.listdir(os.getcwd())):
        if os.path.isdir(file):
            continue

        img_orig = cv.LoadImageM(file)
        w, h = img_orig.cols, img_orig.rows

        img_hls = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 3)
        cv.CvtColor(img_orig, img_hls, cv.CV_BGR2HLS)

        output_img = cv.CreateImage((PIXELS_PER_COLOR * NUM_CLUSTERS, h),
                                    cv.IPL_DEPTH_8U, 3)

        # convert to numpy array
        a = numpy.asarray(cv.GetMat(img_hls))
        a = a.reshape(a.shape[0] * a.shape[1],
                      a.shape[2])  # make it 1-dimensional

        # set initial centroids
        init_cluster = []
        step = w / NUM_CLUSTERS
        #for x, y in [(0*step, h*0.1), (1*step, h*0.3), (2*step, h*0.5), (3*step, h*0.7), (4*step, h*0.9)]:
        for x, y in [(0 * step, h * 0.1), (1 * step, h * 0.1),
                     (2 * step, h * 0.3), (3 * step, h * 0.3),
                     (4 * step, h * 0.5), (5 * step, h * 0.5),
                     (6 * step, h * 0.7), (7 * step, h * 0.7),
                     (8 * step, h * 0.9), (9 * step, h * 0.9)]:
            x = int(x)
            y = int(y)
            init_cluster.append(a[y * w + x])

        centroids, labels = scipy.cluster.vq.kmeans2(a,
                                                     numpy.array(init_cluster))

        vecs, dist = scipy.cluster.vq.vq(a, centroids)  # assign codes
        counts, bins = scipy.histogram(vecs,
                                       len(centroids))  # count occurrences
        centroid_count = []
        for i, count in enumerate(counts):
            if count > 0:
                centroid_count.append((centroids[i].tolist(), count))

        centroid_count.sort(hls_sort2)

        px_count = w * h
        x = 0
        for item in centroid_count:
            count = item[1] * (PIXELS_PER_COLOR * NUM_CLUSTERS)
            count = int(math.ceil(count / float(px_count)))
            centroid = item[0]
            for l in range(count):
                if x + l >= PIXELS_PER_COLOR * NUM_CLUSTERS:
                    break
                for y in range(h):
                    cv.Set2D(output_img, y, x + l,
                             (centroid[0], centroid[1], centroid[2]))
            x += count

        output_img_rgb = cv.CreateImage(cv.GetSize(output_img),
                                        cv.IPL_DEPTH_8U, 3)
        cv.CvtColor(output_img, output_img_rgb, cv.CV_HLS2BGR)
        cv.SaveImage(file, output_img_rgb)

        # save to text-file
        if file_nr == 0:
            f_out = open("..\\..\\chapter_colors.txt", "w")
            f_out.write("")  # reset
            f_out.close()

        f_out = open("..\\..\\chapter_colors.txt", "a")
        row = cv.GetRow(output_img_rgb, 0)
        WIDTH = row.cols
        #print WIDTH

        data_items = []
        counter = 0
        last_px = cv.Get1D(row, 0)
        for i in range(WIDTH):
            px = cv.Get1D(row, i)
            if px == last_px:
                counter += 1
                if i == WIDTH - 1:
                    #f_out.write("%d, %d, %d, %d _ " % (int(last_px[2]), int(last_px[1]), int(last_px[0]), counter))
                    data_items.append(
                        "%d, %d, %d, %d" % (int(last_px[2]), int(
                            last_px[1]), int(last_px[0]), counter))
                continue
            else:
                #f_out.write("%d, %d, %d, %d _ " % (int(last_px[2]), int(last_px[1]), int(last_px[0]), counter))
                data_items.append("%d, %d, %d, %d" % (int(
                    last_px[2]), int(last_px[1]), int(last_px[0]), counter))
                counter = 1
                last_px = px

        print NUM_CLUSTERS - len(data_items), "colors missing"
        for j in range(NUM_CLUSTERS -
                       len(data_items)):  # sometimes there are fewer colors
            data_items.append("0, 0, 0, 0")
        f_out.write(" _ ".join(data_items))
        f_out.write("\n")
        f_out.close()

    os.system("convert chapter_*.png -append _CHAPTERS.png")
    return
Beispiel #21
0
def main():
    args = sys.argv[1:]
    arg0 = args[0]
    do_display_output = True if 'display' in args else False
    if do_display_output:
        outdir = args[-1]
    else:
        outdir = None
    do_profile = True if 'profile' in args else False
    if os.path.isdir(arg0):
        imgpaths = []
        for dirpath, dirnames, filenames in os.walk(arg0):
            for imgname in [f for f in filenames if isimgext(f)]:
                imgpaths.append(os.path.join(dirpath, imgname))
    else:
        imgpaths = [arg0]

    template_zero_path = "sequoia_template_zero_skinny.png"
    template_one_path = "sequoia_template_one_skinny.png"
    sidesymbol_path = "sequoia_side_symbol.png"

    Izero = cv.LoadImage(template_zero_path, cv.CV_LOAD_IMAGE_GRAYSCALE)
    Ione = cv.LoadImage(template_one_path, cv.CV_LOAD_IMAGE_GRAYSCALE)
    Isidesym = cv.LoadImage(sidesymbol_path, cv.CV_LOAD_IMAGE_GRAYSCALE)
    IsymA = cv.LoadImage(SYMA_IMGPATH, cv.CV_LOAD_IMAGE_GRAYSCALE)
    IsymB = cv.LoadImage(SYMB_IMGPATH, cv.CV_LOAD_IMAGE_GRAYSCALE)
    IsymC = cv.LoadImage(SYMC_IMGPATH, cv.CV_LOAD_IMAGE_GRAYSCALE)
    IsymD = cv.LoadImage(SYMD_IMGPATH, cv.CV_LOAD_IMAGE_GRAYSCALE)
    IsymE = cv.LoadImage(SYME_IMGPATH, cv.CV_LOAD_IMAGE_GRAYSCALE)

    # Rescale IZERO/IONE/ISIDESYM to match this dataset's image dimensions
    exmpl_imgsize = cv.GetSize(cv.LoadImage(imgpaths[0]))
    if exmpl_imgsize != (ORIG_IMG_W, ORIG_IMG_H):
        print "...rescaling images..."
        Izero = rescale_img(Izero, ORIG_IMG_W, ORIG_IMG_H, exmpl_imgsize[0],
                            exmpl_imgsize[1])
        Ione = rescale_img(Ione, ORIG_IMG_W, ORIG_IMG_H, exmpl_imgsize[0],
                           exmpl_imgsize[1])
        Isidesym = rescale_img(Isidesym, ORIG_IMG_W, ORIG_IMG_H,
                               exmpl_imgsize[0], exmpl_imgsize[1])
        IsymA = rescale_img(IsymA, ORIG_IMG_W, ORIG_IMG_H, exmpl_imgsize[0],
                            exmpl_imgsize[1])
        IsymB = rescale_img(IsymB, ORIG_IMG_W, ORIG_IMG_H, exmpl_imgsize[0],
                            exmpl_imgsize[1])
        IsymC = rescale_img(IsymC, ORIG_IMG_W, ORIG_IMG_H, exmpl_imgsize[0],
                            exmpl_imgsize[1])
        IsymD = rescale_img(IsymD, ORIG_IMG_W, ORIG_IMG_H, exmpl_imgsize[0],
                            exmpl_imgsize[1])
        IsymE = rescale_img(IsymE, ORIG_IMG_W, ORIG_IMG_H, exmpl_imgsize[0],
                            exmpl_imgsize[1])

    Izero = tempmatch.smooth(Izero, 3, 3, bordertype='const', val=255.0)
    Ione = tempmatch.smooth(Ione, 3, 3, bordertype='const', val=255.0)
    Isidesym = tempmatch.smooth(Isidesym, 3, 3, bordertype='const', val=255.0)
    IsymA = tempmatch.smooth(IsymA, 3, 3, bordertype='const', val=255.0)
    IsymB = tempmatch.smooth(IsymB, 3, 3, bordertype='const', val=255.0)
    IsymC = tempmatch.smooth(IsymC, 3, 3, bordertype='const', val=255.0)
    IsymD = tempmatch.smooth(IsymD, 3, 3, bordertype='const', val=255.0)
    IsymE = tempmatch.smooth(IsymE, 3, 3, bordertype='const', val=255.0)

    t = time.time()
    err_imgpaths = []
    for imgpath in imgpaths:
        I = cv.LoadImage(imgpath, cv.CV_LOAD_IMAGE_GRAYSCALE)
        print "For imgpath {0}:".format(imgpath)
        side, isflip = get_side(I, IsymA, IsymB, IsymC, IsymD, IsymE)
        if side == None:
            print "    ERROR GET_SIDE"
            err_imgpaths.append(imgpath)
            continue
        elif side == 1:
            print "    Detected Backside, isflip={0}".format(isflip)
            continue
        cv.ResetImageROI(I)
        if isflip:
            cv.Flip(I, I, flipMode=-1)
        decodings, marklocs = decode(I, Izero, Ione, _imgpath=imgpath)
        if decodings == None:
            print "    ERROR DECODE"
            err_imgpaths.append(imgpath)
            continue
        else:
            print "    {0} isflip={1}".format(decodings, isflip)
        if not do_display_output:
            continue
        # Output colorful image with interpretation displayed nicely
        Icolor = cv.LoadImage(imgpath, cv.CV_LOAD_IMAGE_COLOR)
        if isflip:
            cv.Flip(Icolor, Icolor, flipMode=-1)
        for marktype, tups in marklocs.iteritems():
            if marktype == MARK_ON:
                color = cv.CV_RGB(0, 0, 255)
            else:
                color = cv.CV_RGB(255, 0, 0)
            for (imgpath, (x1, y1, x2, y2), userdata) in tups:
                cv.Rectangle(Icolor, (x1, y1), (x2, y2), color, thickness=2)
        imgname = os.path.split(imgpath)[1]
        outrootdir = os.path.join(outdir, imgname)
        try:
            os.makedirs(outrootdir)
        except:
            pass
        outpath = os.path.join(
            outrootdir, "{0}_bbs.png".format(os.path.splitext(imgname)[0]))
        cv.SaveImage(outpath, Icolor)

    dur = time.time() - t
    print "...Finished Decoding {0} images ({1} s).".format(len(imgpaths), dur)
    print "    Avg. Time per Image: {0} s".format(dur / float(len(imgpaths)))
    print "    Number of Errors: {0}".format(len(err_imgpaths))
    print "Done."
Beispiel #22
0
    #resize the image
    if (keepAspectRatio):
        resizeFactor = 1.0
        if (w > h):
            resizeFactor = float(maxSize) / float(w)
        else:
            resizeFactor = float(maxSize) / float(h)

        newWidth = int(w * resizeFactor + 0.5)
        # cols = width
        newHeight = int(h * resizeFactor + 0.5)
        # rows = height
    else:
        newWidth = int(finalSizeX)
        # cols = width
        newHeight = int(finalSizeY)
        # rows = height

    imageResized = cv.CreateMat(newHeight, newWidth, image.type)
    cv.Resize(imageCropped, imageResized, interpolation=interpolation_FLAG)
    cv.SaveImage(outputPath + imageName, imageResized)

partLocsList.close()
imageList.close()
noRotationList.close()
unclearRotationList.close()
smallBBList.close()
finalBBList.close()
finalPartLocsList.close()
partsCountList.close()
def main():
    import argparse
    import logging
    import os
    import yaml

    parser = argparse.ArgumentParser()
    parser.add_argument('classifier')
    parser.add_argument(
        '--postprocess',
        action="store_true",
        help='Run postprocessing, close blobs and remove noise')
    parser.add_argument('videolist',
                        help='A file listed all the videos to be indexed')
    parser.add_argument('cores',
                        type=int,
                        help='Number of processes of paralellism')
    args = parser.parse_args()

    logging.basicConfig(level=logging.WARNING,
                        format="%(asctime)s - %(message)s")

    classifier = zipfile.ZipFile(args.classifier)
    global forest0, svmmodels, training_bosts, hist0
    forest0, hist0, forest1, hist1, training_bosts, svmmodels, prior = \
        load_from_classifier(classifier)
    classifier.close()

    KEY_FRAME_PERIOD = 2  # in seconds
    #queue = Queue.Queue()
    #data_queue = Queue.Queue()
    queue = Manager().Queue()
    data_queue = Manager().Queue()

    for processes in [2]:
        pool = Pool(processes=processes)
        video_list = open(args.videolist, 'r')
        log_file = open('statistics%d.txt' % processes, 'a')

        fps = 0
        fps_count = 0

        for video_file in video_list:
            video_file = video_file.strip()
            name = os.path.splitext(video_file)[0]
            file_path = os.path.join(VIDEO_RESOURCE, video_file)
            log_file.write(file_path + "\n")

            capture = cv.CaptureFromFile(file_path)
            frame_rate = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FPS)
            total_frames = cv.GetCaptureProperty(capture,
                                                 cv.CV_CAP_PROP_FRAME_COUNT)
            log_file.write("frame rate: %.3f, total frames: %d\n" %
                           (frame_rate, total_frames))

            start_time0 = time.time()
            key_frame_counter = 0
            frame = cv.QueryFrame(capture)
            os.makedirs("tmp")
            while frame:
                cv.SaveImage("tmp/" + name + "%d.png" % key_frame_counter,
                             frame)
                for i in xrange(int(KEY_FRAME_PERIOD * frame_rate)):
                    frame = cv.QueryFrame(capture)
                key_frame_counter += 1
            for i in xrange(key_frame_counter):
                data_queue.put(i)

            start_time = time.time()

            pool.map(calculate_class,
                     [(name, queue, i) for i in xrange(key_frame_counter)])

            elapse_time = time.time() - start_time

            accuracy_file = open('fact.txt', 'w')
            while not queue.empty():
                q_entry = queue.get()
                frame_counter = q_entry[0]
                ILP = q_entry[1]
                accuracy_file.write('%d' % frame_counter)
                for class_index, score in enumerate(ILP):
                    accuracy_file.write(',%.02f' % score)
                accuracy_file.write('\n')
            accuracy_file.close()

            os.system("rm -rf tmp")

            log_file.write("decoding time: %.2f, total time: %.2f, key frames: %d, frame per sec: %.3f\n" \
                % (start_time - start_time0, elapse_time, key_frame_counter, key_frame_counter / elapse_time))
            fps += key_frame_counter / elapse_time
            fps_count += 1

            #time.sleep(10)

        video_list.close()
        log_file.write("average fps: %.3f\n" % (fps / fps_count))
        log_file.close()
 def publish_image(self, task_id, image, postfix=''):
     self.image_pubs[task_id].publish(image)
     ffull = pt.join(task_id, time.strftime('%A_%m_%d_%Y_%I_%M_%S%p') + postfix + '.jpg')
     cv.SaveImage(ffull, image)
def main():
	os.chdir(sys.argv[1])
	output_dir = os.path.join(OUTPUT_DIR_NAME, OUTPUT_DIR_NAME)
	try:
		os.mkdir(output_dir)
	except:
		pass
	
	os.chdir(OUTPUT_DIR_NAME)
	for file in os.listdir(os.getcwd()):
		if os.path.isdir(file):
			continue
		
		img_orig = cv.LoadImageM(file)
		w, h = img_orig.cols, img_orig.rows
		
		img_hls = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 3)
		cv.CvtColor(img_orig, img_hls, cv.CV_BGR2HLS)
		
		output_img = cv.CreateImage((PIXELS_PER_COLOR*NUM_CLUSTERS, h), cv.IPL_DEPTH_8U, 3)
		
		# convert to numpy array
		a = numpy.asarray(cv.GetMat(img_hls))
		a = a.reshape(a.shape[0] * a.shape[1], a.shape[2]) # make it 1-dimensional
		
		# set initial centroids
		init_cluster = []
		step = w / NUM_CLUSTERS
		for x, y in [(0*step, h*0.1), (1*step, h*0.3), (2*step, h*0.5), (3*step, h*0.7), (4*step, h*0.9)]:
			x = int(x)
			y = int(y)
			init_cluster.append(a[y*w + x])
		
		centroids, labels = scipy.cluster.vq.kmeans2(a, numpy.array(init_cluster))
		
		vecs, dist = scipy.cluster.vq.vq(a, centroids) # assign codes
		counts, bins = scipy.histogram(vecs, len(centroids)) # count occurrences
		centroid_count = []
		for i, count in enumerate(counts):
			if count > 0:
				centroid_count.append((centroids[i].tolist(), count))
		
		#centroids = centroids.tolist()
		#centroids.sort(hls_sort)
		
		centroid_count.sort(hls_sort2)
		
		px_count = w * h
		x = 0
		for item in centroid_count:
			count = item[1] * (PIXELS_PER_COLOR*NUM_CLUSTERS)
			count = int(math.ceil(count / float(px_count)))
			centroid = item[0]
			for l in range(count):
				if x+l >= PIXELS_PER_COLOR*NUM_CLUSTERS:
					break
				for y in range(h):
					cv.Set2D(output_img, y, x+l, (centroid[0], centroid[1], centroid[2]))
			x += count
		
		#for centroid_nr, centroid in enumerate(centroids):
		#	for j in range(PIXELS_PER_COLOR):
		#		x = centroid_nr*PIXELS_PER_COLOR + j
		#		for y in range(h):
		#			cv.Set2D(output_img, y, x, (centroid[0], centroid[1], centroid[2]))
		
		output_img_rgb = cv.CreateImage(cv.GetSize(output_img), cv.IPL_DEPTH_8U, 3)
		cv.CvtColor(output_img, output_img_rgb, cv.CV_HLS2BGR)
		cv.SaveImage(os.path.join(OUTPUT_DIR_NAME, file), output_img_rgb)
	
	print "appending..."
	os.chdir(OUTPUT_DIR_NAME)
	os.system("convert shot_colors_*.png -append result.png")
	
	#raw_input("- done -")
	return
Beispiel #26
0
def getcamera():
    capture = cv.CaptureFromCAM(0)
    img = cv.QueryFrame(capture)
    cv.SaveImage("ca1.jpg", img)
def cvmat_iterator(cvmat):
    for i in range(cvmat.rows):
        for j in range(cvmat.cols):
            yield cvmat[i, j]


cam = Camera(3.0)
rend = Renderer(640, 480, 2)
cv.NamedWindow("snap")

#images = [rend.frame(i) for i in range(0, 2000, 400)]
images = [rend.frame(i) for i in [1200]]

if 0:
    for i, img in enumerate(images):
        cv.SaveImage("final/%06d.png" % i, img)

size = cv.GetSize(images[0])
corners = [get_corners(i) for i in images]

goodcorners = [co for (im, (ok, co)) in zip(images, corners) if ok]


def checkerboard_error(xformed):
    def pt2line(a, b, c):
        x0, y0 = a
        x1, y1 = b
        x2, y2 = c
        return abs((x2 - x1) * (y1 - y0) - (x1 - x0) *
                   (y2 - y1)) / math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
Beispiel #28
0
                    blockCentreY = OPTICAL_FLOW_BLOCK_HEIGHT / 2
                    for y in range(opticalFlowX.shape[0]):

                        blockCentreX = OPTICAL_FLOW_BLOCK_WIDTH / 2
                        for x in range(opticalFlowX.shape[1]):

                            endX = blockCentreX + cv.Get2D(opticalFlowX, y,
                                                           x)[0]
                            endY = blockCentreY + cv.Get2D(opticalFlowY, y,
                                                           x)[0]

                            cv.Line(curImage,
                                    (int(blockCentreX), int(blockCentreY)),
                                    (int(endX), int(endY)), lineColor)

                            blockCentreX += OPTICAL_FLOW_BLOCK_WIDTH

                        blockCentreY += OPTICAL_FLOW_BLOCK_HEIGHT

                # Save the image
                cv.CvtColor(curImage, curImage, cv.CV_RGB2BGR)

                imageFilename = "{0}{1:08d}.{2}".format(
                    options.prefix, imageIdx, options.imageFormat)
                cv.SaveImage(imageFilename, curImage)
                imageIdx += 1

sys.stdout.write("\n")
sys.stdout.flush()
                #image = Image.open(imagefile)
                #image.show()

                for (x, y, w, h) in correct_faces:
                    #cropfile = imagefile + str(nface) + '.jpg'
                    #cv.SaveImage(cropfile, frame[y:y+h, x:x+w])
                    #crop = Image.open(cropfile)
                    #crop.show()
                    if nface == numrows * maxcropwindows:
                        xcropnext = xcrop
                        numrows += 1
                        ycrop += int(h / 4)

                    xcropnext = xcropnext - int(2 * w / 3)
                    cv.ShowImage('crop' + str(nface), frame[y:y + h, x:x + w])
                    cv.SaveImage(imagefile + str(nface) + '.jpg',
                                 frame[y:y + h, x:x + w])
                    cv.SetMouseCallback("crop" + str(nface),
                                        on_mouse,
                                        param=nface)
                    cv.MoveWindow("crop" + str(nface), xcropnext, ycrop)
                    #xcropnext = xcropnext + w + 4
                    nface += 1
#				sleep(1)
#face_size_correct = False

#else:
#print str(c)

        clear_tmpfiles()
        capture = None
        cv.DestroyAllWindows()
Beispiel #30
0
# Setup the mean shift object...
ms = MeanShift()
ms.set_data(data, 'df')
ms.set_spatial('kd_tree')
ms.set_scale(numpy.array([1.5, 1.5]))

# Do some visualisation...
dim = 512
image = numpy.zeros((dim, dim, 3), dtype=numpy.float32)

for r in xrange(data.shape[0]):
    loc = data[r, :]
    loc = (loc + 5.0) / 10.0
    loc *= dim
    image[int(loc[1] + 0.5), int(loc[0] + 0.5), :] = 64.0

print 'Projecting samples to line...'
to_render = 4 * 1024
line = ms.manifolds(data[:to_render], 1, True)
print 'Done'

for r in xrange(line.shape[0]):
    loc = line[r, :]
    loc = (loc + 5.0) / 10.0
    loc *= dim
    image[int(loc[1] + 0.5), int(loc[0] + 0.5), :] = 255.0

image = array2cv(image)
cv.SaveImage('manifold2.png', image)