def square(self, image):
        """ SQURE FUNCTION """
        height = image.shape[0]
        width = image.shape[1]
        white = [255, 255, 255]

        if height != width:
            if height > width:
                dif = height - width
                squared = cv2.copyMakeBorder(image,
                                             0,
                                             0,
                                             int(dif / 2),
                                             int(dif / 2),
                                             cv2.BORDER_CONSTANT,
                                             value=white)
                # print(squared.shape)
                return squared
            else:
                dif = width - height
                squared = cv2.copyMakeBorder(image,
                                             int(dif / 2),
                                             int(dif / 2),
                                             0,
                                             0,
                                             cv2.BORDER_CONSTANT,
                                             value=white)
                # print(squared.shape)
                return squared
        else:
            return image
Beispiel #2
0
def resize_frame(img, frame_height, frame_width):
    prop_size = ""  # proper size, indicates whether to keep the measurement of fixed height or width to recalculate the other
    height, width = img.shape[:2]
    if height > width:
        new_height = frame_height
        new_width = width * frame_height / height
        prop_size = "h"
        if new_width > frame_width:
            height = new_height
            width = new_width
            new_width = frame_width
            new_height = height * frame_width / width
            prop_size = "w"
    elif width > height:
        new_width = frame_width
        new_height = height * frame_width / width
        prop_size = "w"
        if new_height > frame_height:
            height = new_height
            width = new_width
            new_height = frame_height
            new_width = width * frame_height / height
            prop_size = "h"

    img_r = cv2.resize(img, (int(new_width), int(new_height)),
                       interpolation=cv2.INTER_AREA)
    if prop_size == "h":
        dim_bordo = frame_width - img_r.shape[1]
        frame = cv2.copyMakeBorder(img_r,
                                   top=0,
                                   bottom=0,
                                   left=int(dim_bordo / 2),
                                   right=int(dim_bordo / 2),
                                   borderType=cv2.BORDER_CONSTANT,
                                   value=[0, 0, 0])
    elif prop_size == "w":
        dim_bordo = frame_height - img_r.shape[0]
        frame = cv2.copyMakeBorder(img_r,
                                   top=int(dim_bordo / 2),
                                   bottom=int(dim_bordo / 2),
                                   left=0,
                                   right=0,
                                   borderType=cv2.BORDER_CONSTANT,
                                   value=[0, 0, 0])
    # in case the frame with border have sizes different from those desired caused by roundings to int (some pixels), is resized to the exact size

    if frame.shape[0] != frame_height or frame.shape[1] != frame_width:
        frame = cv2.resize(frame, (frame_width, frame_height),
                           interpolation=cv2.INTER_AREA)
    return frame
Beispiel #3
0
def ridimensiona(img, frame_height, frame_width):
    dim_esatta = ""  # "a" se alt=frame_height "l" altrimenti
    alt, larg = img.shape[:2]
    if alt > larg:
        nuova_alt = frame_height
        nuova_larg = larg * frame_height / alt
        dim_esatta = "a"
        if nuova_larg > frame_width:
            alt = nuova_alt
            larg = nuova_larg
            nuova_larg = frame_width
            nuova_alt = alt * frame_width / larg
            dim_esatta = "l"
    elif larg > alt:
        nuova_larg = frame_width
        nuova_alt = alt * frame_width / larg
        dim_esatta = "l"
        if nuova_alt > frame_height:
            alt = nuova_alt
            larg = nuova_larg
            nuova_alt = frame_height
            nuova_larg = larg * frame_height / alt
            dim_esatta = "a"

    img_r = cv2.resize(img, (int(nuova_larg), int(nuova_alt)),
                       interpolation=cv2.INTER_AREA)
    if dim_esatta == "a":
        dim_bordo = frame_width - img_r.shape[1]
        frame = cv2.copyMakeBorder(img_r,
                                   top=0,
                                   bottom=0,
                                   left=int(dim_bordo / 2),
                                   right=int(dim_bordo / 2),
                                   borderType=cv2.BORDER_CONSTANT,
                                   value=[0, 0, 0])
    elif dim_esatta == "l":
        dim_bordo = frame_height - img_r.shape[0]
        frame = cv2.copyMakeBorder(img_r,
                                   top=int(dim_bordo / 2),
                                   bottom=int(dim_bordo / 2),
                                   left=0,
                                   right=0,
                                   borderType=cv2.BORDER_CONSTANT,
                                   value=[0, 0, 0])
    # Nel caso in cui il frame con il bordo ha dimensioni diverse dovute ad arrotondamenti ad int, viene ridimensionato con le dimensioni esatte
    if frame.shape[0] != frame_height or frame.shape[1] != frame_width:
        frame = cv2.resize(frame, (frame_width, frame_height),
                           interpolation=cv2.INTER_AREA)
    return frame
def resize_image(image, height=IMAGE_SIZE, width=IMAGE_SIZE):
    top, bottom, left, right = (0, 0, 0, 0)

    #獲取影象尺寸
    h, w, _ = image.shape

    #對於長寬不相等的圖片,找到最長的一邊
    longest_edge = max(h, w)

    #計算短邊需要增加多上畫素寬度使其與長邊等長
    if h < longest_edge:
        dh = longest_edge - h
        top = dh // 2
        bottom = dh - top
    elif w < longest_edge:
        dw = longest_edge - w
        left = dw // 2
        right = dw - left
    else:
        pass

    #RGB顏色
    BLACK = [0, 0, 0]

    #給影象增加邊界,是圖片長、寬等長,cv2.BORDER_CONSTANT指定邊界顏色由value指定
    constant = cv2.copyMakeBorder(image,
                                  top,
                                  bottom,
                                  left,
                                  right,
                                  cv2.BORDER_CONSTANT,
                                  value=BLACK)

    #調整影象大小並返回
    return cv2.resize(constant, (height, width))
Beispiel #5
0
def resize_keep_aspectratio(image_src, dst_size):
    src_h, src_w = image_src.shape[:2]
    #print(src_h,src_w)
    dst_h, dst_w = dst_size

    #判断应该按哪个边做等比缩放
    h = dst_w * (float(src_h) / src_w)  #按照w做等比缩放
    w = dst_h * (float(src_w) / src_h)  #按照h做等比缩放

    h = int(h)
    w = int(w)

    if h <= dst_h:
        image_dst = cv2.resize(image_src, (dst_w, int(h)))
    else:
        image_dst = cv2.resize(image_src, (int(w), dst_h))

    h_, w_ = image_dst.shape[:2]
    #print(h_,w_)

    top = int(((dst_h - h_) / 2) + 10)
    down = int(((dst_h - h_ + 1) / 2) + 10)
    left = int(((dst_w - w_) / 2) + 10)
    right = int(((dst_w - w_ + 1) / 2) + 10)

    value = [255, 255, 255]
    borderType = cv2.BORDER_CONSTANT
    #print(top, down, left, right)
    image_dst = cv2.copyMakeBorder(image_dst, top, down, left, right,
                                   borderType, None, value)

    return image_dst
Beispiel #6
0
def createPano(hMat, imOrder, imgRGB):

    limits = np.zeros((len(images), 4))
    for i in range(0, len(images) - 1):
        limits[i] = outputLimits(hMat[i + 1], imgRGB[imOrder[i]].shape[:2],
                                 imgRGB[imOrder[i + 1]].shape[:2])

    xmin = round(np.min(limits[:, 0]))
    xmax = round(np.max(limits[:, 1]))
    ymin = round(np.min(limits[:, 2]))
    ymax = round(np.max(limits[:, 3]))

    pano = imgRGB[imOrder[0]]
    pad_widths = [
        -ymin,
        max(ymax, pano.shape[0]) - pano.shape[0], -xmin,
        max(xmax, pano.shape[1]) - pano.shape[1]
    ]
    pano_pad = cv2.copyMakeBorder(pano, *pad_widths, cv2.BORDER_CONSTANT)

    t = [-ymin, -xmin]
    for i in range(1, len(hMat)):
        pano_pad = warp2Images(pano_pad, imgRGB[imOrder[i]], hMat[i], t)
        cv2.imshow(' ', pano_pad)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    return pano_pad
def resize_and_pad(image, size_w, size_h, pad_value=114):
    image_h, image_w = image.shape[:2]

    is_based_w = float(size_h) >= (image_h * size_w / float(image_w))
    if is_based_w:
        target_w = size_w
        target_h = int(np.round(image_h * size_w / float(image_w)))
    else:
        target_w = int(np.round(image_w * size_h / float(image_h)))
        target_h = size_h

    image = cv.resize(image, (target_w, target_h),
                      0,
                      0,
                      interpolation=cv.INTER_NEAREST)
    #image = cv.resize(image, (target_w, target_h), 0, 0, interpolation=cv.INTER_LINEAR)

    top = int(max(0, np.round((size_h - target_h) / 2)))
    left = int(max(0, np.round((size_w - target_w) / 2)))
    bottom = size_h - top - target_h
    right = size_w - left - target_w
    image = cv.copyMakeBorder(image,
                              top,
                              bottom,
                              left,
                              right,
                              cv.BORDER_CONSTANT,
                              value=[pad_value, pad_value, pad_value])

    return image
Beispiel #8
0
def letterbox_image(image, desired_size):
    """resize image with unchanged aspect ratio using padding (width, height)"""

    ih, iw = image.shape[:2]
    w, h = desired_size
    scale = min(w / iw, h / ih)
    nw = int(iw * scale)
    nh = int(ih * scale)

    resized_image = cv2.resize(image, (nw, nh))

    delta_w = w - nw
    delta_h = h - nh
    top, bottom = delta_h // 2, delta_h - (delta_h // 2)
    left, right = delta_w // 2, delta_w - (delta_w // 2)

    color = [128, 128, 128]
    new_image = cv2.copyMakeBorder(resized_image,
                                   top,
                                   bottom,
                                   left,
                                   right,
                                   cv2.BORDER_CONSTANT,
                                   value=color)
    return new_image
Beispiel #9
0
def scale_and_centre(img, size, margin=20, background=0):
    """Scales and centres an image onto a new background square."""
    h, w = img.shape[:2]

    def centre_pad(length):
        """Handles centering for a given length that may be odd or even."""
        if length % 2 == 0:
            side1 = int((size - length) / 2)
            side2 = side1
        else:
            side1 = int((size - length) / 2)
            side2 = side1 + 1
        return side1, side2

    def scale(r, x):
        return int(r * x)

    if h > w:
        t_pad = int(margin / 2)
        b_pad = t_pad
        ratio = (size - margin) / h
        w, h = scale(ratio, w), scale(ratio, h)
        l_pad, r_pad = centre_pad(w)
    else:
        l_pad = int(margin / 2)
        r_pad = l_pad
        ratio = (size - margin) / w
        w, h = scale(ratio, w), scale(ratio, h)
        t_pad, b_pad = centre_pad(h)

    img = cv2.resize(img, (w, h))
    img = cv2.copyMakeBorder(img, t_pad, b_pad, l_pad, r_pad,
                             cv2.BORDER_CONSTANT, None, background)
    return cv2.resize(img, (size, size))
Beispiel #10
0
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
    # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
    shape = img.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, 32), np.mod(dh, 32)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return img, ratio, (dw, dh)
Beispiel #11
0
def showIfWindows(model, images, orig_labels):
    if platform.system() == "Windows":
        # 3 images shown randomly
        randomIndices = np.random.choice(len(y_train), 5)
        for i in randomIndices:
            rand_im = images[i]
            rand_im_lbl_orig = orig_labels[i]
            rand_im_lbl_pred = model.predict(np.array([rand_im * 255]))
            rand_im = cv2.copyMakeBorder(rand_im, 200, 200, 200, 200,
                                         cv2.BORDER_CONSTANT, 0)
            # print(f"Y: {rand_im_lbl_orig}, Y_pred: {rand_im_lbl_pred}")
            cv2.putText(
                rand_im,
                f"Y: {rand_im_lbl_orig}, Y_pred: {[np.where(r==1)[0][0] for r in rand_im_lbl_pred]}",
                (5, 100),
                cv2.FONT_HERSHEY_SIMPLEX,
                1,
                (255, 0, 0),
                2,
                cv2.LINE_AA,
            )
            cv2.imshow("Sample", rand_im)
            cv2.waitKey(0)
        cv2.destroyAllWindows()
    else:
        printInColor("Showing Images only works on OS with GUI")
Beispiel #12
0
def resize_to_fit(img: object, new_size: int) -> object:

    """Resizes the image to new squared dimension (dim: new_size) keeping the 
    proportions and padding with black pixels"""

    # shape retorna (h, w)
    ratio = new_size / (max(img.shape[:2]))

    new_shape = tuple([int(ratio * size) for size in img.shape[:2]])

    # Realizando o resize na proporção calculada. Resize usa (w,h)
    new_img = cv2.resize(img, (new_shape[1], new_shape[0]))

    # Ajustando o pad para cada uma das dimensões (w e h)
    total_padw = new_size - new_img.shape[1]
    pad_right = total_padw // 2
    pad_left = total_padw - pad_right

    total_padh = new_size - new_img.shape[0]
    pad_top = total_padh // 2
    pad_bottom = total_padh - pad_top

    new_img = cv2.copyMakeBorder(
        new_img, pad_top, pad_bottom, pad_left, pad_right, cv2.BORDER_CONSTANT
    )

    return new_img
    def render(self):
        # 拉伸图片到窗口宽度,同时保持宽高比
        # 注意:处理之前的高、宽对应原图像素,if-else语句之后对应屏幕像素
        height, width = self.display_area.height, self.display_area.width
        if height / width > self.win_h / self.win_w:
            height, width = self.win_h, int(self.win_h * width / height)
        else:
            height, width = int(self.win_w * height / width), self.win_w

        # 显示区域
        display = np.array(self.img)
        scaled = cv2.resize(display[self.display_area], (width, height),
                            interpolation=cv2.INTER_NEAREST)

        # 用边框将图片充满窗口
        top = (self.win_h - height) // 2
        bot = self.win_h - height - top
        left = (self.win_w - width) // 2
        right = self.win_w - width - left
        self.display = cv2.copyMakeBorder(scaled, top, bot, left, right,
                                          cv2.BORDER_CONSTANT, (0, 0, 0))
        # 为了将鼠标点击投影回原图位置的变量
        self.scaled_size = Area.AreaTuple(height, width)
        self.top_border = top
        self.left_border = left
Beispiel #14
0
def Prewitt(originImg, rows, columns, threshold, mask_1, mask_2):
    image = np.zeros(originImg.shape, np.uint8)
    imageBordered = cv2.copyMakeBorder(originImg, 1, 1, 1, 1,
                                       cv2.BORDER_REFLECT)
    maskRows = len(mask_1)
    maskColumns = len(mask_1[0])

    for r in range(rows):
        for c in range(columns):
            p1, p2 = 0, 0
            for maskR in range(maskRows):
                for maskC in range(maskColumns):
                    p1 += int(imageBordered[r + maskR - 1, c + maskC -
                                            1]) * mask_1[maskR][maskC]
                    p2 += int(imageBordered[r + maskR - 1, c + maskC -
                                            1]) * mask_2[maskR][maskC]
            gradient = math.sqrt(p1**2 + p2**2)
            if gradient >= threshold:
                image[r, c] = 0
            else:
                image[r, c] = 255

    cv2.imshow("Prewitt", image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    return image
def img_stitch():
    # Used for image stitching: grab the paths to the input images and initialize our images list
    imgPaths = sorted(list(paths.list_images(this_path + "imgToStitch")))
    imgs = []

    # loop over the image paths, load each one, and add them to our
    # images to stitch list
    for imgPath in imgPaths:
        img = cv2.imread(imgPath)
        imgs.append(img)

    # initialize OpenCV's image stitcher object and then perform the image
    # stitching
    stitcher = cv2.createStitcher() if imutils.is_cv3() else cv2.Stitcher_create()
    (status, stitched) = stitcher.stitch(imgs)

    # if the status is '0', then OpenCV successfully performed image
    # stitching
    if status == 0:
        # create a 10 pixel border surrounding the stitched image
        stitched = cv2.copyMakeBorder(stitched, 10, 10, 10, 10,
                                      cv2.BORDER_CONSTANT, (0, 0, 0))

        # get number of images already in the ./stitchUnlabel directory
        imgCount = len([name for name in os.listdir(this_path + 'stitchUnlabel') if os.path.isfile(os.path.join(this_path + 'stitchUnlabel', name))]) - 1

        # write the output stitched image to disk (adding 1 to imgCount bc first image is gsv1 not gsv0)
        cv2.imwrite(this_path + 'stitchUnlabel' + '/gsv'+ str(imgCount+1) + '.jpg', stitched)

    # otherwise the stitching failed, likely due to not enough keypoints)
    # being detected
    else:
        print("[INFO] image stitching failed ({})".format(status))
Beispiel #16
0
def compass(originImg, rows, columns, threshold, mask):
    image = np.zeros(originImg.shape, np.uint8)
    borderImg = cv2.copyMakeBorder(originImg, 1, 1, 1, 1, cv2.BORDER_REFLECT)

    for r in range(rows):
        for c in range(columns):
            imageList = [
                borderImg[r - 1, c - 1], borderImg[r - 1, c],
                borderImg[r - 1, c + 1], borderImg[r, c + 1], borderImg[r + 1,
                                                                        c + 1],
                borderImg[r + 1, c], borderImg[r + 1, c - 1], borderImg[r,
                                                                        c - 1]
            ]
            maxK = 0
            for offset in range(8):
                tempSum = 0
                for num in range(8):
                    tempSum += imageList[num] * mask[(num + offset) % 8]
                if tempSum > maxK:
                    maxK = tempSum

            if maxK >= threshold:
                image[r, c] = 0
            else:
                image[r, c] = 255

    cv2.imshow("Compass", image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    return image
Beispiel #17
0
    def extract_section_coordinates_from_image(self, image,
                                               threshold_breakpoint):
        # Takes an raw image with a white bright background and looks for the contour of
        # a rectangular object and returns the coordinates representing a polygon shape of that object.
        # A threshold needs to be provided representing an acceptable breaking point at which the coordinates will be returned

        # The width of the border to wrap the image in case the object overflows the image
        BORDER_WIDTH = 100

        image = cv2.copyMakeBorder(image,
                                   BORDER_WIDTH,
                                   BORDER_WIDTH,
                                   BORDER_WIDTH,
                                   BORDER_WIDTH,
                                   cv2.BORDER_CONSTANT,
                                   value=[255, 255, 255])
        image_grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # Calculate the image area
        image_height, image_width = image.shape[:2]
        image_area = image_height * image_width
        # Repeat to find the right threshold value for finding a rectangle
        found = False
        # Increment the threshold until a contour is found
        threshold_current = threshold_breakpoint
        while found is False:
            if threshold_breakpoint < 200:
                threshold_breakpoint = threshold_current + 5
                threshold_current = threshold_breakpoint
            # Extract contours using threshold
            _, threshold = cv2.threshold(image_grayscale, threshold_breakpoint,
                                         255, cv2.THRESH_BINARY)
            contours, _ = cv2.findContours(threshold, cv2.RETR_LIST,
                                           cv2.CHAIN_APPROX_NONE)
            # Go through each contour that could be extracted from the image
            for contour in contours:
                contour_area = cv2.contourArea(contour)
                if contour_area > (image_area /
                                   6) and contour_area < (image_area / 1.01):
                    epsilon = 0.1 * cv2.arcLength(contour, True)
                    # Close open lines into a complete wrapped shade
                    approx = cv2.approxPolyDP(contour, epsilon, True)
                    # When the shape can be wrapped the contour rectangle has been found
                    if len(approx) == 4:
                        found = True
                    # Otherwise keep decrementing the threshold value until it's found
                    else:
                        threshold_breakpoint = threshold_breakpoint - 1
                        break
                    # Set and return coordinates from approximate
                    coordinates = numpy.empty((4, 2), dtype="float32")
                    # Top-left
                    coordinates[0] = approx[0] - BORDER_WIDTH
                    # Top-right
                    coordinates[1] = approx[1] - BORDER_WIDTH
                    # Bottom-right
                    coordinates[2] = approx[2] - BORDER_WIDTH
                    # Bottom-left
                    coordinates[3] = approx[3] - BORDER_WIDTH
                    return coordinates
def pad_image(image):
    (h, w) = image.shape[:2]
    padW = int((140 - w) / 2.0)
    padH = int((140 - h) / 2.0)
    image = cv2.copyMakeBorder(image, padH, padH, padW, padW,
                               cv2.BORDER_CONSTANT)
    image = cv2.resize(image, (140, 140))
    return image
Beispiel #19
0
def add_borders(img):
    borderType = cv.BORDER_CONSTANT
    dst = cv.copyMakeBorder(img,
                            BBOX_WIDTH,
                            BBOX_WIDTH,
                            BBOX_WIDTH,
                            BBOX_WIDTH,
                            borderType,
                            value=BBOX_COLOR)
    return dst
Beispiel #20
0
def draw_box_with_text(img,
                       text=None,
                       edge_color=(255, 255, 255),
                       border=2,
                       mode=0):
    """
    draws box around
    """
    # width, height = img.shape[1::-1]
    # scale = max(width, height) / 400
    font_scale, font_thickness = .8, 2
    font_color = (0, 0, 0)

    if mode == 0:  # standard mode
        img = cv2.copyMakeBorder(img,
                                 10 * border,
                                 border,
                                 border,
                                 border,
                                 cv2.BORDER_CONSTANT,
                                 value=edge_color)

    elif mode == 1:  # low vision
        img = cv2.copyMakeBorder(img,
                                 10 * border,
                                 border,
                                 border,
                                 border,
                                 cv2.BORDER_CONSTANT,
                                 value=edge_color)
        font_scale, font_thickness = 1.6, 2

    if text is not None:
        x = y = border
        img = cv2.putText(img,
                          text, (x + 2, y + 15),
                          cv2.FONT_HERSHEY_SIMPLEX,
                          font_scale,
                          font_color,
                          font_thickness,
                          lineType=cv2.LINE_AA)

    return img
Beispiel #21
0
def _apply_func_perspective(image):
    """
        Apply a perspective to an image
    """
    rgb_image = image.convert('RGBA')

    img_arr = np.array(rgb_image)

    a = img_arr
    w, h = a.shape[0], a.shape[1]
    if h // w > 3:
        img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGBA2BGRA)
        img = cv2.copyMakeBorder(img,
                                 20,
                                 20,
                                 0,
                                 0,
                                 cv2.BORDER_CONSTANT,
                                 value=[255, 255, 255])
        #img = cv2.imread(img)
        img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA))
        img = img.resize((48, 48), Image.ANTIALIAS)
        return img
    '''
        Set random vertex to target quadrilateral
    '''
    random_flag = random.uniform(0, 2)
    if random_flag > 1:
        vertex1 = [0, 0]
        vertex4 = [random.uniform(1.0000, 1.1618) * (w - 1), 0]
        lens = vertex4[0] - vertex1[0]
        vertex2 = [random.uniform(0.1, 0.1618) * (w - 1), h - 1]
        vertex3 = [vertex2[0] + lens * random.uniform(0.932, 1), h - 1]
    else:
        vertex4 = [(w - 1) * random.uniform(1.0000, 1.1618), 0]
        vertex1 = [random.uniform(0.1000, 0.2618) * (w - 1), 0]
        lens = vertex4[0] - vertex1[0]
        vertex2 = [random.uniform(0.0000, 0.0618) * (w - 1), h - 1]
        vertex3 = [vertex2[0] + lens * random.uniform(0.932, 1), h - 1]

    pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]])
    pts1 = np.float32([vertex1, vertex2, vertex3, vertex4])
    '''
        get 3*3 transform martix M
    '''
    M = cv2.getPerspectiveTransform(pts, pts1)

    dsize = get_perspective_offset(M, w, h)

    dst = cv2.warpPerspective(a, M, dsize)
    img_arr = np.array(dst)
    img = Image.fromarray(np.uint8(img_arr))

    img = img.resize((48, 48), Image.ANTIALIAS)
    return img
    def __init__(self, global_grid, agent_handler):

        self._no_of_agents = Config.NO_OF_AGENTS
        self._grid_len = Config.GRID_LEN
        self._grid_width = Config.GRID_WIDTH
        self._sensor_range = Config.SENSOR_RANGE
        self._agent_color_list = agent_handler.get_all_agent_color_list()
        self._global_grid = copy.copy(global_grid)
        self._mapped_grid = 224 * np.ones(
            shape=[self._grid_len, self._grid_width, 3], dtype=np.uint8)
        self._mapped_grid = cv2.copyMakeBorder(self._mapped_grid, 10, 10, 10,
                                               10, cv2.BORDER_CONSTANT)
Beispiel #23
0
 def get_highlighted_image(self, target_width: int = None) -> np.ndarray:
     return cv2.copyMakeBorder(
         (self.get_resized_image(target_width) if target_width is not None
          else self.get_data())[self.BORDER_WIDTH:-self.BORDER_WIDTH,
                                self.BORDER_WIDTH:-self.BORDER_WIDTH, ],
         top=self.BORDER_WIDTH,
         bottom=self.BORDER_WIDTH,
         left=self.BORDER_WIDTH,
         right=self.BORDER_WIDTH,
         borderType=cv2.BORDER_ISOLATED,
         value=self.BORDER_COLOR,
     )
 def draw_class(self, image, class_name):
     height, width = image.shape[:2]
     bordered = cv2.copyMakeBorder(image,
                                   top=0,
                                   bottom=50,
                                   left=0,
                                   right=0,
                                   borderType=cv2.BORDER_CONSTANT,
                                   value=[245, 222, 179])
     cv2.putText(bordered, class_name, (2, height + 30),
                 cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2)
     return bordered
Beispiel #25
0
def readData(path, h,w,imgs,labs):
    for filename in os.listdir(path):
        if filename.endswith('.jpg'):
            filename = path + '/' + filename

            img = cv2.imread(filename)
            # cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            top,bottom,left,right = getPaddingSize(img)
            # 将图片放大, 扩充图片边缘部分
            img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0,0,0])
            img = cv2.resize(img, (h, w))

            imgs.append(img)
            labs.append(path)
    return imgs,labs
Beispiel #26
0
def morphEx(img, morph_type, ksize):
    bsize = ksize // 2
    bordered = cv2.copyMakeBorder(img,
                                  bsize,
                                  bsize,
                                  bsize,
                                  bsize,
                                  borderType=cv2.BORDER_CONSTANT,
                                  value=0)

    kernel = np.ones((ksize, ) * 2, np.uint8)
    filtered = cv2.morphologyEx(bordered, morph_type, kernel, borderValue=0)

    result = filtered[bsize:-bsize, bsize:-bsize]
    assert result.shape == img.shape, (result.shape, img.shape)
    return result
Beispiel #27
0
def filter_image(im, filter):
    im_f = np.zeros((np.size(im, 1), np.size(im, 0)))
    #padding
    im_temp = cv2.copyMakeBorder(im,
                                 top=1,
                                 bottom=1,
                                 left=1,
                                 right=1,
                                 borderType=cv2.BORDER_REPLICATE)
    #
    for i in range(0, np.size(im, 0) - 3):
        for j in range(0, np.size(im, 1) - 3):  #x-direction
            #w=im_temp[j:j+3,i:i+3]
            #o=np.multiply(im_temp[j:3,i:3],filter)
            im_f[j, i] = np.sum(np.multiply(im_temp[j:j + 3, i:i + 3], filter))
    return im_f
Beispiel #28
0
def NevatiaBabu(originImg, rows, columns, threshold, mask_1, mask_2):
    image = np.zeros(originImg.shape, np.uint8)
    borderImg = cv2.copyMakeBorder(originImg, 2, 2, 2, 2, cv2.BORDER_REPLICATE)
    mask_3 = arrayClockwise(mask_1)
    mask_4 = arrayClockwise(mask_2)
    mask_6 = arrayFlip(mask_4)
    mask_5 = arrayClockwise(mask_6)

    for r in range(rows):
        for c in range(columns):
            maxK = 0
            for num in range(6):
                tempsum = 0
                for maskN in range(len(mask_1)):
                    for maskC in range(len(mask_1[0])):
                        if num == 0:
                            tempsum += int(borderImg[r + maskN - 2, c + maskC -
                                                     2]) * mask_1[maskN, maskC]
                        elif num == 1:
                            tempsum += int(borderImg[r + maskN - 2, c + maskC -
                                                     2]) * mask_2[maskN, maskC]
                        elif num == 2:
                            tempsum += int(borderImg[r + maskN - 2, c + maskC -
                                                     2]) * mask_6[maskN, maskC]
                        elif num == 3:
                            tempsum += int(borderImg[r + maskN - 2, c + maskC -
                                                     2]) * mask_3[maskN, maskC]
                        elif num == 4:
                            tempsum += int(borderImg[r + maskN - 2, c + maskC -
                                                     2]) * mask_4[maskN, maskC]
                        elif num == 5:
                            tempsum += int(borderImg[r + maskN - 2, c + maskC -
                                                     2]) * mask_5[maskN, maskC]
                if tempsum > maxK:
                    maxK = tempsum

            if maxK >= threshold:
                image[r, c] = 0
            else:
                image[r, c] = 255

    cv2.imshow("NevatiaBabu", image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    return image
Beispiel #29
0
def resize_img(im):
    old_size = im.shape[:2]  # old_size is in (height, width) format
    ratio = float(img_size) / max(old_size)
    new_size = tuple([int(x * ratio) for x in old_size])
    # new_size should be in (width, height) format
    im = cv2.resize(im, (new_size[1], new_size[0]))
    delta_w = img_size - new_size[1]
    delta_h = img_size - new_size[0]
    top, bottom = delta_h // 2, delta_h - (delta_h // 2)
    left, right = delta_w // 2, delta_w - (delta_w // 2)
    new_im = cv2.copyMakeBorder(im,
                                top,
                                bottom,
                                left,
                                right,
                                cv2.BORDER_CONSTANT,
                                value=[0, 0, 0])
    return new_im, ratio, top, left
def resize_image(image, size=config.image_size[0]):
    # 缩放比例
    scale = 0.0
    w_s = 0.0  # 宽度偏移
    h_s = 0.0  # 高度偏移
    # 获取图片尺寸
    h, w, _ = image.shape
    if h > w:
        scale = h / size
        w_s = (size - (w / scale)) / 2
    else:
        scale = w / size
        h_s = (size - (h / scale)) / 2

    top, bottom, left, right = (0, 0, 0, 0)

    # 对于长宽不等的图片,找到最长的一边
    longest_edge = max(h, w)

    # 计算短边需要增加多少像素宽度才能与长边等长(相当于padding,长边的padding为0,短边才会有padding)
    if h < longest_edge:
        dh = longest_edge - h
        top = dh // 2
        bottom = dh - top
    elif w < longest_edge:
        dw = longest_edge - w
        left = dw // 2
        right = dw - left
    else:
        pass  # pass是空语句,是为了保持程序结构的完整性。pass不做任何事情,一般用做占位语句。

    # RGB颜色
    BLACK = [128, 128, 128]
    # 给图片增加padding,使图片长、宽相等
    # top, bottom, left, right分别是各个边界的宽度,cv2.BORDER_CONSTANT是一种border type,表示用相同的颜色填充
    constant = cv.copyMakeBorder(image,
                                 top,
                                 bottom,
                                 left,
                                 right,
                                 cv.BORDER_CONSTANT,
                                 value=BLACK)
    # 调整图像大小并返回图像,目的是减少计算量和内存占用,提升训练速度
    return cv.resize(constant, (size, size)), scale, w_s, h_s