Beispiel #1
0
def testLut():
    testimg = cv2.imread('/Users/zjj/Desktop/IMG_3271.jpg')
    lutpath = '/Users/zjj/Desktop/lookup_0_origin_2.png'

    lut = MYLUT(lutpath)
    img = testimg.copy()
    img = lut.imageInLut(img)
    cv2.imwrite('/Users/zjj/Desktop/IMG_3271_lut.jpg', img)
    return 0
    # testimg = cv2.imread('/Users/zjj/Downloads/照片/IMG_0495.JPG')\

    # testimg = cv2.resize(testimg, (600, 400))
    fileinlutdir = os.listdir('lut')
    fileinlutdir = sorted(fileinlutdir)
    for filename in fileinlutdir:
        if filename.endswith('.png') and filename.startswith('lookup'):
            lutpath = 'lut/' + filename
            print('Init', time.time())
            lut = MYLUT(lutpath)
            img = testimg.copy()
            for i in range(1):
                print('Start', time.time())
                img = lut.imageInLut(img)
                print('Finish', time.time())
                windowname = filename + str(i)
                cv2.namedWindow(windowname, cv2.WINDOW_KEEPRATIO)
                cv2.resizeWindow(windowname, 1080, 1920)
                cv2.imshow(windowname, img)
                cv2.waitKey(0)
                cv2.destroyWindow(windowname)
    print("Done")
Beispiel #2
0
def detectColor():
    def empty(a):
        pass

    cv2.namedWindow("TrackBars")
    cv2.resizeWindow("TrackBars", 640, 240)
    cv2.createTrackbar("Hue Min", "TrackBars", 0, 179, empty)
    cv2.createTrackbar("Sat Min", "TrackBars", 0, 255, empty)
    cv2.createTrackbar("Val Min", "TrackBars", 0, 255, empty)
    cv2.createTrackbar("Hue Max", "TrackBars", 179, 179, empty)
    cv2.createTrackbar("Sat Max", "TrackBars", 255, 255, empty)
    cv2.createTrackbar("Val Max", "TrackBars", 255, 255, empty)

    while True:
        img = cv2.imread("./lambo.jpeg")
        imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        h_min = cv2.getTrackbarPos("Hue Min", "TrackBars")
        h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")
        s_min = cv2.getTrackbarPos("Sat  Min", "TrackBars")
        s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")
        v_min = cv2.getTrackbarPos("Val Min", "TrackBars")
        v_max = cv2.getTrackbarPos("Val Max", "TrackBars")
        #print(v_min)
        # lower1 = np.array([h_min, s_min, v_min])
        # upper1 = np.array([h_max, s_max, v_max])
        lower = np.array([000, 000, 186])
        upper = np.array([179, 255, 255])
        mask = cv2.inRange(imgHSV, lower, upper)
        imgResult = cv2.bitwise_and(img, img, mask=mask)

        cv2.imshow("Original", img)
        cv2.imshow("HSV", imgHSV)
        cv2.imshow("Mask", mask)
        cv2.imshow("Result", imgResult)
        cv2.waitKey(0)
Beispiel #3
0
def displayIMG(img, windowName):

    cv2.namedWindow( windowName, cv2.WINDOW_NORMAL )

    cv2.resizeWindow(windowName, 1000, 800)

    cv2.imshow(windowName, img)
Beispiel #4
0
    def __init__(self, num, color=None):
        if color == 'white':  # predefined values for mapping whites only
            init_h_min, init_h_max, init_s_min, init_s_max, init_v_min, init_v_max = 0, 179, 0, 59, 220, 255
            init_thr1, init_thr2, init_area = 166, 171, 2000
        elif color == 'green':
            init_h_min, init_h_max, init_s_min, init_s_max, init_v_min, init_v_max = 55, 90, 30, 170, 40, 245
            init_thr1, init_thr2, init_area = 0, 255, 3000
        else:
            init_h_min, init_h_max, init_s_min, init_s_max, init_v_min, init_v_max = 0, 179, 0, 255, 0, 255
            init_thr1, init_thr2, init_area = 0, 255, 0

        cv2.namedWindow(f"HSV_{num}")
        cv2.resizeWindow(f"HSV_{num}", 640, 240)
        cv2.createTrackbar(f"HUE Min_{num}", f"HSV_{num}", init_h_min, 179,
                           empty)
        cv2.createTrackbar(f"HUE Max_{num}", f"HSV_{num}", init_h_max, 179,
                           empty)
        cv2.createTrackbar(f"SAT Min_{num}", f"HSV_{num}", init_s_min, 255,
                           empty)
        cv2.createTrackbar(f"SAT Max_{num}", f"HSV_{num}", init_s_max, 255,
                           empty)
        cv2.createTrackbar(f"VALUE Min_{num}", f"HSV_{num}", init_v_min, 255,
                           empty)
        cv2.createTrackbar(f"VALUE Max_{num}", f"HSV_{num}", init_v_max, 255,
                           empty)

        cv2.namedWindow(f"Parameters_{num}")
        cv2.resizeWindow(f"Parameters_{num}", 640, 240)
        cv2.createTrackbar(f"Threshold1_{num}", f"Parameters_{num}", init_thr1,
                           255, empty)
        cv2.createTrackbar(f"Threshold2_{num}", f"Parameters_{num}", init_thr2,
                           255, empty)
        cv2.createTrackbar(f"Area_{num}", f"Parameters_{num}", init_area,
                           30000, empty)
        self.num = num
Beispiel #5
0
def initialize_trackbars(initial_trackbar_values):
    cv.namedWindow("Adaptive Threshold")
    cv.resizeWindow("Adaptive Threshold", 360, 240)
    cv.createTrackbar('thresh_val', 'Adaptive Threshold', initial_trackbar_values[0], 1, do_nothing)
    cv.createTrackbar('adapt_val', 'Adaptive Threshold', initial_trackbar_values[1], 1, do_nothing)
    cv.createTrackbar("high_threshold", 'Adaptive Threshold', initial_trackbar_values[2], 10, do_nothing)
    cv.createTrackbar("block_size", 'Adaptive Threshold', initial_trackbar_values[3], 101, do_nothing)
    cv.createTrackbar("sub_const", 'Adaptive Threshold', initial_trackbar_values[4], 100, do_nothing)
Beispiel #6
0
def init(row, col, win_name):
    # win_name = str(x) + str(y)
    if win_name in windowses:
        return

    cv.namedWindow(win_name, cv.WINDOW_NORMAL)
    cv.resizeWindow(win_name, WIN_SIZE[0], WIN_SIZE[1])
    cv.moveWindow(win_name, col * WIN_SIZE[0], row * WIN_SIZE[1])
    windowses.add(win_name)
Beispiel #7
0
def initialize_trackbars(initial_trackbar_values):
    cv.namedWindow("TrackBars")
    cv.resizeWindow("TrackBars", 360, 240)
    cv.createTrackbar('min', 'TrackBars', initial_trackbar_values[0], 255,
                      do_nothing)
    cv.createTrackbar('max', 'TrackBars', initial_trackbar_values[1], 255,
                      do_nothing)
    cv.createTrackbar("apertureSize", 'TrackBars', initial_trackbar_values[2],
                      7, do_nothing)
 def btn2State(self):
     global img
     if self.btn_2.isEnabled():
         self.btn_3.setEnabled(True)
         #   print("Btn_2被点击")
         get_window_jpg()
         cv2.resizeWindow('image', 640, 480)
         #   get_image_roi(img_cv)
         lab_data()
Beispiel #9
0
def adjust_circle(image, circle):
    """Manually adjust a circle on an image.  Takes an input image and
    circle(center, radius) and shows a blown up region centered around the
    circle.  Allows the user to adjust the circle using trackbars.  Waits
    for keypress to finish.  Returns adjusted circle and keypress."""

    # initialize window and trackbars
    win = 'Adjust Target Circle'
    cv2.namedWindow(win)
    cv2.resizeWindow(win, 200, 200)

    # initialize variables
    roi, roi_origin = get_circle_roi(image, circle)

    circle_local = np.copy(circle)
    circle_local[0] = circle[0] - np.flipud(roi_origin)

    # scale image to be bigger and allow for easier adjustment
    scale = cf['roi']['ADJUST_SCALE']
    roi = scale_image(roi, scale)
    circle_local = np.multiply(circle_local, scale)

    img_circ = np.copy(roi)
    # Set max radius of circle such that the max diameter is the length
    # of the region of interest
    max_radius = roi.shape[0] // 2

    # initialize trackbars
    cv2.createTrackbar('x', win,
                       circle_local[0][0], roi.shape[1], empty_callback)
    cv2.createTrackbar('y', win,
                       circle_local[0][1], roi.shape[0], empty_callback)
    cv2.createTrackbar('r', win,
                       circle_local[1], max_radius, empty_callback)

    keypress = -1

    while keypress == -1:
        cv2.circle(img_circ,
                   (cv2.getTrackbarPos('x', win),
                    cv2.getTrackbarPos('y', win)),
                   cv2.getTrackbarPos('r', win),
                   (0, 0, 0),
                   1)
        cv2.imshow(win, img_circ)
        img_circ = np.copy(roi)
        keypress = cv2.waitKey(5)

    adj_circle = ((cv2.getTrackbarPos('x', win) // scale +
                   roi_origin[1],
                   cv2.getTrackbarPos('y', win) // scale +
                   roi_origin[0]),
                  cv2.getTrackbarPos('r', win) // scale)

    cv2.destroyWindow(win)
    return adj_circle, keypress
def show_img(img):
    """
    If there is a matched image, the function shows it on screen
        :param img: image to show on screen
    """
    cv2.namedWindow("Painting rectification", cv2.WINDOW_KEEPRATIO)
    cv2.imshow("Painting rectification", img)
    cv2.resizeWindow("Painting rectification", int(img.shape[1] / 2),
                     int(img.shape[0] / 2))
    cv2.waitKey(0)
Beispiel #11
0
 def showPolygon(self, **kw):
     cv2.namedWindow('image', cv2.WINDOW_NORMAL)
     cv2.resizeWindow('image', 1001, 1001)  #定义frame的大小
     cv2.imshow('image', self.img)
     if len(kw) > 0:
         cv2.imwrite(
             '/Users/sean/Documents/Projects/Algorithm Learn/Packing Algorithm/image/'
             + kw["_type"] + time.asctime(time.localtime(time.time())) +
             '.png', self.img)
     cv2.waitKey(0)
     cv2.destroyAllWindows()
Beispiel #12
0
    def __init__(self):
        cv2.namedWindow("trackBars")

        cv2.resizeWindow("trackBars", 640, 240)

        def empty(a):
            pass

        cv2.createTrackbar("Hue min", "trackBars", 0, 179, empty)
        cv2.createTrackbar("Hue max", "trackBars", 179, 179, empty)
        cv2.createTrackbar("Sat min", "trackBars", 50, 255, empty)
        cv2.createTrackbar("Sat max", "trackBars", 255, 255, empty)
        cv2.createTrackbar("Value min", "trackBars", 0, 255, empty)
        cv2.createTrackbar("Value max", "trackBars", 255, 255, empty)
Beispiel #13
0
    def trackbarwindow(self):
        def empty(a):
            pass

        cv2.namedWindow(self.winname)
        cv2.resizeWindow(self.winname, 640, 240)
        cv2.createTrackbar(self.trackbar_name[0], self.winname, 0, 179, empty)
        cv2.createTrackbar(self.trackbar_name[1], self.winname, 88, 179, empty)
        cv2.createTrackbar(self.trackbar_name[2], self.winname, 41, 255, empty)
        cv2.createTrackbar(self.trackbar_name[3], self.winname, 255, 255,
                           empty)
        cv2.createTrackbar(self.trackbar_name[4], self.winname, 114, 255,
                           empty)
        cv2.createTrackbar(self.trackbar_name[5], self.winname, 255, 255,
                           empty)
Beispiel #14
0
def findColor(
):  #Finds the color of an object by user varying slider to mask out object
    def empty(a):
        pass

    frameWidth = 640
    frameHeight = 480

    cap = cv2.VideoCapture(0)
    cap.set(3, frameWidth)
    cap.set(4, frameHeight)
    cap.set(10, 150)

    cv2.namedWindow("HSV")
    cv2.resizeWindow("HSV", 640, 240)
    cv2.createTrackbar("Hue Min", "HSV", 0, 179, empty)
    cv2.createTrackbar("Sat Min", "HSV", 0, 255, empty)
    cv2.createTrackbar("Val Min", "HSV", 0, 255, empty)
    cv2.createTrackbar("Hue Max", "HSV", 179, 179, empty)
    cv2.createTrackbar("Sat Max", "HSV", 255, 255, empty)
    cv2.createTrackbar("Val Max", "HSV", 255, 255, empty)

    while True:
        _, img = cap.read()
        imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        h_min = cv2.getTrackbarPos("Hue Min", "HSV")
        h_max = cv2.getTrackbarPos("Hue Max", "HSV")
        s_min = cv2.getTrackbarPos("Sat  Min", "HSV")
        s_max = cv2.getTrackbarPos("Sat Max", "HSV")
        v_min = cv2.getTrackbarPos("Val Min", "HSV")
        v_max = cv2.getTrackbarPos("Val Max", "HSV")
        #print(v_min)
        lower = np.array([h_min, s_min, v_min])
        upper = np.array([h_max, s_max, v_max])
        mask = cv2.inRange(imgHSV, lower, upper)
        result = cv2.bitwise_and(img, img, mask=mask)

        mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

        cv2.imshow("Original", img)
        cv2.imshow("Mask", mask)
        cv2.imshow("Result", result)

        if cv2.waitKey(1) & 11111111 == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()
Beispiel #15
0
def calc_matrix(reference_points_target):

    global img
    cam = VideoCapture(0)  # 0 -> index of camera
    s, img = cam.read()

    cv2.namedWindow("image", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("image", 1280, 720)
    cv2.setMouseCallback("image", draw_circle)

    while (1):
        cv2.imshow('image', img)
        k = cv2.waitKey(20) & 0xFF
        if k == 27:
            break
        elif k == ord("p"):
            print(mouseX, mouseY)
        elif k == ord("b"):
            pos_blue = [mouseX, mouseY]
            print('Blue Marked at ' + str(pos_blue))
        elif k == ord("r"):
            pos_red = [mouseX, mouseY]
            print('Red Marked at ' + str(pos_red))
        elif k == ord("y"):
            pos_yellow = [mouseX, mouseY]
            print('Yellow Marked at ' + str(pos_yellow))
        elif k == ord("q"):
            cv2.destroyAllWindows()
            break

    try:
        pos_blue
        pos_red
        pos_yellow
    except NameError:
        raise Exception("Not all three reference points were assigned")

    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # set CV2 color scale to RGB
    rows, cols, ch = img.shape

    pts1 = np.float32([pos_blue, pos_red, pos_yellow])
    pts2 = np.float32(reference_points_target)

    M = cv2.getAffineTransform(pts1, pts2)

    return M
def takeVal():

    img = cv2.imread('SysImages/Parameters.png')[:160, :, :]
    img = cv2.resize(img, (340, 120))

    cv2.namedWindow('Parameters')
    cv2.imshow('Parameters', img)
    cv2.resizeWindow('Parameters', 640, 240)
    cv2.createTrackbar('HUE Min', 'Parameters', 150, 255, empty)
    cv2.createTrackbar('HUE Max', 'Parameters', 190, 255, empty)
    cv2.createTrackbar('SAT Min', 'Parameters', 195, 255, empty)
    cv2.createTrackbar('SAT Max', 'Parameters', 255, 255, empty)
    cv2.createTrackbar('VALUE Min', 'Parameters', 195, 255, empty)
    cv2.createTrackbar('VALUE Max', 'Parameters', 255, 255, empty)
    cv2.createTrackbar('Thresh1', 'Parameters', 0, 255, empty)
    cv2.createTrackbar('Thresh2', 'Parameters', 225, 255, empty)
    cv2.createTrackbar('Area Min', 'Parameters', 100, 1000, empty)
Beispiel #17
0
def detect_color(path):
    # add track bar
    def empty(x):
        pass

    cv2.namedWindow('TrackBar')
    cv2.resizeWindow('TrackBar', 640, 240)
    cv2.createTrackbar('Hue min', 'TrackBar', 0, 179, empty)
    cv2.createTrackbar('Hue max', 'TrackBar', 179, 179, empty)
    cv2.createTrackbar('Saturation min', 'TrackBar', 0, 255, empty)
    cv2.createTrackbar('Saturation max', 'TrackBar', 255, 255, empty)
    cv2.createTrackbar('Val min', 'TrackBar', 0, 255, empty)
    cv2.createTrackbar('Val max', 'TrackBar', 255, 255, empty)

    while True:
        img = cv2.imread(path)
        imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

        # get the values from track bar
        h_min = cv2.getTrackbarPos('Hue min', 'TrackBar')
        h_max = cv2.getTrackbarPos('Hue max', 'TrackBar')
        s_min = cv2.getTrackbarPos('Saturation min', 'TrackBar')
        s_max = cv2.getTrackbarPos('Saturation max', 'TrackBar')
        v_min = cv2.getTrackbarPos('Val min', 'TrackBar')
        v_max = cv2.getTrackbarPos('Val max', 'TrackBar')

        lower = np.array([h_min, s_min, v_min])
        upper = np.array([h_max, s_max, v_max])
        mask = cv2.inRange(imgHSV, lower, upper)

        imgMasked = cv2.bitwise_and(img, img, mask=mask)

        # cv2.imshow('Original image', img)
        # cv2.imshow('HSV image', imgHSV)
        # cv2.imshow('Mask image', mask)
        # cv2.imshow('Masked image', imgMasked)

        imgStack = stackImages(0.6, ([img, imgHSV], [mask, imgMasked]))
        cv2.imshow('Stacked Images', imgStack)

        cv2.waitKey(1)
def get_image_roi(rgb_image):
    '''
    获得用户ROI区域的rect=[x,y,w,h]
    :param rgb_image:
    :return:
    '''
    #    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    global g_rect
    img = rgb_image
    cv2.namedWindow('image')
    cv2.resizeWindow('image', 640, 480)
    while True:
        cv2.setMouseCallback('image', on_mouse)
        cv2.resizeWindow('image', 640, 480)
        cv2.startWindowThread()  # 加在这个位置
        cv2.imshow('image', img)
        key = cv2.waitKey(0)
        if cv2.getWindowProperty('image', cv2.WND_PROP_AUTOSIZE) < 1:
            break

    cv2.destroyAllWindows()
    #    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return g_rect
def webCam ():

     url = "http://172.28.131.139:8080/shot.jpg"
     cv2.namedWindow("ipcam",cv2.WINDOW_NORMAL)
     cv2.resizeWindow("ipcam",800,800)

     while True:
      imgRes=urllib.request.urlopen(url)
      imgArray= np.array(bytearray(imgRes.read()),dtype=np.uint8)
      img =cv2.imdecode(imgArray,-1)
      cv2.imshow("ipcam",img)
      img3=np.copy(img)
      img4=np.copy(img)
      LINES=Thread(target= houghline_transform, args=(img,))
      LINES.start()
      #ret=LINES.join()
      ret=result.get()
      hsv = cv2.cvtColor(img3, cv2.COLOR_BGR2HSV)
      Gray_scaled_image=Gray_image(hsv)
      gray_copy=np.copy(Gray_scaled_image)
      filtered_image2=region_of_interest(img4,gray_copy)

      #print(ret)
      #LINES=houghline_transform(img)
      img2=np.copy(img)
      #average_slope_intercept(img2,LINES)

      #_thread.start_new_thread( loop, (ret,gray_copy,img4,filtered_image2 ) )
      for line in ret:
        x1,y1,x2,y2 =line[0]
        cv2.line(img4,(x1,y1),(x2,y2),(255,255,255),6) #draws a green line with a thickness equal to 3
        cv2.line(gray_copy,(x1,y1),(x2,y2),(255,0,0),6)
        cv2.line(filtered_image2,(x1,y1),(x2,y2),(255,0,0),6)
      cv2.namedWindow("Gray_scale_with_lines",cv2.WINDOW_NORMAL)
      cv2.resizeWindow("Gray_scale_with_lines",800,800)
      cv2.imshow("Gray_scale_with_lines",gray_copy)
      cv2.namedWindow("Image_with_lines",cv2.WINDOW_NORMAL)
      cv2.resizeWindow("Image_scale_with_lines", 800, 800)
      cv2.imshow("Image_with_lines",img4)
      cv2.namedWindow("filtered",cv2.WINDOW_NORMAL)
      cv2.resizeWindow("filtered", 800, 800)
      cv2.imshow("filtered",filtered_image2)
      _thread.start_new_thread( average_slope_intercept, (img2, ret, ) )

      if cv2.waitKey(1)==27:
          break
def showImage(image_lines, gray_lines, filter):
    #with_objects=Countour_detection(img,Gray_scaled_image)
    cv2.namedWindow("image_with_lines", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("image_with_lines", 200, 200)
    cv2.imshow("image_with_lines", image_lines)
    cv2.namedWindow("Filtered_image", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("Filtered_image", 200, 200)
    cv2.imshow("Filtered_image", filter)
    cv2.namedWindow("Gray_scale_with_lines", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("Gray_scale_with_lines", 200, 200)
    cv2.imshow("Gray_scale_with_lines", gray_lines)

    #cv2.imshow("with_objects",with_objects)
    cv2.waitKey(1)
Beispiel #21
0
# Define all the global variables
heightImg = 640
widthImg = 480
Image_Resolution_height = 640
Image_Resolution_width = 480

# For Photo from live Webcam feed
#img_counter=utilities.webcamfeed(heightImg,widthImg,Image_Resolution_height,Image_Resolution_width)
img_counter = 2
#For Live Webcam feed, uncomment next line
#if webCamFeed:success, img = cap.read()
#else:

# Reading the Image
# Filepath of Image
pathImage = "opencv_frame_{}.png".format(img_counter - 1)
img = cv2.imread(pathImage)
heightImg, widthImg, _ = img.shape

# Trackbars for Threshold 1 and 2
cv2.namedWindow("Threshold Parameters")
cv2.resizeWindow("Threshold Parameters", 400, 600)
cv2.createTrackbar("Threshold 1", "Threshold Parameters", 60, 255,
                   utilities.nothing)
cv2.createTrackbar("Threshold 2", "Threshold Parameters", 60, 255,
                   utilities.nothing)

Warped_Img = utilities.process(img, heightImg, widthImg)
print(1)
utilities.adaptive_thresholding(Warped_Img, heightImg, widthImg)
Beispiel #22
0
from cv2 import cv2
import numpy as np

img = cv2.imread("Resources/lambo.png")
imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

window = cv2.namedWindow("Trackbars")
cv2.resizeWindow("Trackbars", 512, 512)
cv2.createTrackbar("Hue Min", "Trackbars", 0, 179, lambda x: x)
cv2.createTrackbar("Hue Max", "Trackbars", 24, 179, lambda x: x)
cv2.createTrackbar("Sat Min", "Trackbars", 88, 255, lambda x: x)
cv2.createTrackbar("Sat Max", "Trackbars", 255, 255, lambda x: x)
cv2.createTrackbar("Val Min", "Trackbars", 137, 255, lambda x: x)
cv2.createTrackbar("Val Max", "Trackbars", 255, 255, lambda x: x)

while True:
    mins = np.array([
        cv2.getTrackbarPos("Hue Min", "Trackbars"),
        cv2.getTrackbarPos("Sat Min", "Trackbars"),
        cv2.getTrackbarPos("Val Min", "Trackbars")
    ],
                    dtype=np.uint8)

    maxes = np.array([
        cv2.getTrackbarPos("Hue Max", "Trackbars"),
        cv2.getTrackbarPos("Sat Max", "Trackbars"),
        cv2.getTrackbarPos("Val Max", "Trackbars")
    ],
                     dtype=np.uint8)
    mask = cv2.inRange(imgHSV, mins, maxes)
    result = cv2.bitwise_and(img, img, mask=mask)
            hor[x] = np.hstack(imgArray[x])
        ver = np.vstack(hor)
    else:
        for x in range(0, rows):
            if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
            else:
                imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
            if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
        hor= np.hstack(imgArray)
        ver = hor
    return ver


cv2.namedWindow("TrackBars")                                     #craeting a trackbar to find optimal values of hue , sat and val
cv2.resizeWindow("TrackBars", 640,240)
cv2.createTrackbar("Hue Min", "TrackBars",0,179,empty)
cv2.createTrackbar("Hue Max", "TrackBars",179,179,empty)
cv2.createTrackbar("Sat Min", "TrackBars",0,255,empty)
cv2.createTrackbar("Sat Max", "TrackBars",255,255,empty)
cv2.createTrackbar("Val Min", "TrackBars",0,255,empty)
cv2.createTrackbar("Val Max", "TrackBars",255,255,empty)





livecap = cv2.VideoCapture(0)
livecap.set(3, 600)                      # 3 represents height here
livecap.set(4, 400)                      # 4 represents width here
livecap.set(10, 1000)                    # 10 represents brightnes           
Beispiel #24
0
                imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale,
                                         scale)
            else:
                imgArray[x] = cv2.resize(
                    imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]),
                    None, scale, scale)
            if len(imgArray[x].shape) == 2:
                imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
        hor = np.hstack(imgArray)
        ver = hor
    return ver


# Define Trackbars
cv2.namedWindow('TrackBars')
cv2.resizeWindow('TrackBars', 640, 240)

cv2.createTrackbar('Hue Min', 'TrackBars', 0, 179, empty_fn)
cv2.createTrackbar('Hue Max', 'TrackBars', 19, 179, empty_fn)
cv2.createTrackbar('Sat Min', 'TrackBars', 110, 255, empty_fn)
cv2.createTrackbar('Sat Max', 'TrackBars', 240, 255, empty_fn)
cv2.createTrackbar('Val Min', 'TrackBars', 153, 255, empty_fn)
cv2.createTrackbar('Val Max', 'TrackBars', 255, 255, empty_fn)

while True:
    # Read image file from path
    path = 'Resources/lambo.png'
    img = cv2.imread(path)

    # convert image to HSV
    imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
Beispiel #25
0
def init_window(name, row=0, col=0):
    cv.namedWindow(name, cv.WINDOW_NORMAL)
    cv.resizeWindow(name, WIN_SIZE[0], WIN_SIZE[1])
    cv.moveWindow(name, col * WIN_SIZE[0], row * WIN_SIZE[1])
    warmup_img = np.zeros(shape=(IMG_SIZE[1], IMG_SIZE[0], 3), dtype=np.uint8)
    show_image(warmup_img, name)
def Varredura():
    #realiza a varredura e chama a função de analise de contornos
    img = Camera()
    #caso queira desabilitar a camera, é so comentar a linha de cima e usar as de baixo
    #img = cv2.imread("<endereço da imagem>")
    #img = cv2.resize(img, (639,479), interpolation = cv2.INTER_AREA)
    #chama a função de enquadramento
    img = Enquadramento(img)

    #a função da janela declarada é impedir q a imagem apareça gigantesca e ñ perca qualidade
    cv2.namedWindow('Deseja Recortar a imagem?', cv2.WINDOW_NORMAL)
    cv2.resizeWindow('Deseja Recortar a imagem?', (int(479 * proporcao), 479))

    ##### rotacionar 180º para melhor compreenção
    altura, largura = img.shape[:2]
    ponto = (largura / 2, altura / 2
             )  #ponto no centro da figura, ponto de giro
    rotacao = cv2.getRotationMatrix2D(ponto, 180, 1.0)
    img = cv2.warpAffine(img, rotacao, (largura, altura))

    ###primeira janela pra corte
    print("\n\n\n")
    print("--Deseja recortar a imagem?--")
    print(
        "-Sim:\n  Selecione clicando e arrastando.\n  Confirma com a tecla Enter"
    )
    print("-Não:\n  Aperte a tecla Esc\n\n\n")
    xs, ys, w, h = cv2.selectROI(
        'Deseja Recortar a imagem?',
        img)  #permite o usuario cortar a imagem com o mouse
    cv2.destroyAllWindows()
    crop_img_true = crop_img_contour = img[ys:ys + h, xs:xs +
                                           w]  #salvandoos dados do corte
    cortada = True
    if crop_img_true.shape[0] < 1:
        cortada = False
        crop_img_true = crop_img_contour = img
    print("\n\n\n")
    print(
        "--Utilize as barras para evidenciar, da melhor forma possível, os objetos desejados--"
    )
    print(
        "--O filtro dinâmico possui limitações, logo, talvez não seja possível evidenciar todos os objetos desejados de um só vez--"
    )
    #filtro dinamico
    desejo = "b"
    while 1:
        x, y, z, a, b, c = (
            tr.tracker(crop_img_true)
        )  #biblioteca que gera filtro de cores de modo iterativo

        crop_img_true = cv2.cvtColor(
            crop_img_true, cv2.COLOR_BGR2HSV
        )  #é necessario converter para hsv para passar o filtro

        #criando imagem base pra varredura com o contorno do filtro de cores
        mask_inRange = cv2.inRange(crop_img_true, (x, y, z), (a, b, c))

        #lógica para sobreposição de filtros, necessário caso o usuário queira evidencia cores distantes no espectro HSVe com intervalos
        if desejo == "a":
            mask_inRange = cv2.resize(mask_inRange,
                                      (int(479 * proporcao), 479),
                                      interpolation=cv2.INTER_AREA)
            mask_inRange_temp = cv2.resize(mask_inRange_temp,
                                           (int(479 * proporcao), 479),
                                           interpolation=cv2.INTER_AREA)

            for y in range(0, mask_inRange.shape[0]):  #percorre linhas
                for x in range(0, mask_inRange.shape[1]):  #percorre colunas
                    #mask eh uma imagem composta apenas de 0 e 255
                    if (mask_inRange_temp[y][x] == (255)):
                        mask_inRange[y][x] = (255)
            mask_inRange = cv2.resize(mask_inRange,
                                      (int(2500 * proporcao), 2500),
                                      interpolation=cv2.INTER_AREA)

        print("--Deseja avidenciar mais objetos?--")
        print(" a - Sim \n b - Não")
        desejo = input()
        if desejo == "a":
            mask_inRange_temp = mask_inRange
            crop_img_true = cv2.cvtColor(crop_img_true, cv2.COLOR_HSV2BGR)
        #caso o usuário envio qualquer coisa diferente de a, será considerado b
        else:
            break

    #caso o usuário opte por recoertar a imagem, é necessario corrigir as medidas
    if cortada == True:

        blank_space_black = np.zeros((img.shape[0], img.shape[1]), np.uint8)
        blank_space_black[:] = (0)
        blank_space_black[ys:ys + h, xs:xs + w] = mask_inRange
        mask_inRange = blank_space_black
        crop_img_true = crop_img_contour = img

    #etapa importante para que a função findContours funcione sem problemas
    _, threshold = cv2.threshold(mask_inRange, 250, 255, cv2.THRESH_BINARY)

    #varredura de contornos
    contours = []
    contours, _ = cv2.findContours(threshold, cv2.RETR_TREE,
                                   cv2.CHAIN_APPROX_NONE)

    #listas de bordas
    contornos_reais = []
    total_objetos = 0
    # tirando objetos menores que o minimo... retira ruido
    for cnt in contours:
        if cv2.contourArea(cnt) >= maxi:
            contornos_reais.append(cnt)
            total_objetos += 1

    print("\n\n")
    print("-- Total de objetos encontrados", total_objetos, " --")
    # todos os dados são obtidos atraves da mascara, uma imagem praticamente binária.
    #as edições (contornos, escrever o ID no centro do objeto) são feitas em cima da imagem crop_img_contour que é a mesma imagem justificada, enquadrada lá do inicio
    #desenhar contornos
    cv2.drawContours(crop_img_contour, contornos_reais, -1, (0, 255, 0), 5)

    crop_img_contour, tabela = Identificar_objeto(
        contornos_reais, crop_img_contour,
        img)  #chamar a função Identificar_objetos
    img_final = cv2.resize(crop_img_contour, (850, 512),
                           interpolation=cv2.INTER_AREA)
    cv2.imwrite("img_final.jpg",
                img_final)  #salvando a imagem na pasta do programa

    ###tabela
    tabela_df = pd.DataFrame(data=tabela,
                             columns=[
                                 'Id',
                                 'Centro_X',
                                 'Centro_Y',
                                 'Ângulo',
                             ])
    tabela_df.to_csv("tabela.csv")

    return tabela_df, img_final
Beispiel #27
0
# Ref: https://github.com/PyUserInput/PyUserInput
# Usage:
# m.click(0, 0, 1)  使用 X11 坐标
# k.type_string('Hello, World!')
m = PyMouse()
k = PyKeyboard()

# Screen detection
print('[加载]屏幕参数')
x11_x, x11_y = m.screen_size()
pil_x, pil_y = ImageGrab.grab().size
DPI_times = pil_x / x11_x
EMULATOR_HEADER = 39
EMULATOR_BOTTOM = 42
cv2.namedWindow('output', cv2.WINDOW_NORMAL)
cv2.resizeWindow('output', 500, 500)
cv2.moveWindow('output', int(x11_x) - 500, int(x11_y) - 500)
print('[加载]X11 size:', (x11_x, x11_y))
print('[加载]PIL size:', ImageGrab.grab().size)
print('[加载]DPI times:', DPI_times)

# Helpers - 图像处理
screen_data = None


class ScanIter(object):
    def __init__(self, startp, endp):
        self.start_x, self.start_y = startp
        self.end_x, self.end_y = endp

    def __iter__(self):
    u, v = img.shape[:2]
    # 找到棋盘格角点
    ret, corners = cv2.findChessboardCorners(gray, (w,h),None)
    # 如果找到足够点对,将其存储起来
    if ret == True:
        print("i:", i)
        i = i+1
        # 在原角点的基础上寻找亚像素角点
        cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        #追加进入世界三维点和平面二维点中
        objpoints.append(objp)
        imgpoints.append(corners)
        # 将角点在图像上显示
        cv2.drawChessboardCorners(img, (w,h), corners, ret)
        cv2.namedWindow('findCorners', cv2.WINDOW_NORMAL)
        cv2.resizeWindow('findCorners', 640, 480)
        cv2.imshow('findCorners',img)
        cv2.waitKey(200)
cv2.destroyAllWindows()
#%% 标定
print('正在计算')
#标定
ret, mtx, dist, rvecs, tvecs = \
    cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)


print("ret:",ret  )
print("mtx:\n",mtx)      # 内参数矩阵
print("dist畸变值:\n",dist   )   # 畸变系数   distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print("rvecs旋转(向量)外参:\n",rvecs)   # 旋转向量  # 外参数
print("tvecs平移(向量)外参:\n",tvecs  )  # 平移向量  # 外参数
# python object_size.py --image images/example_03.png --width 3.5
# python object_size.py --image images/test_01.jpg --width 1
# python object_size.py --image images/test_02.jpg --width 1
# python object_size.py --image images/test_04.jpg --width 0.787402

# import the necessary packages
from scipy.spatial import distance as dist
from imutils import perspective
from imutils import contours
from cv2 import cv2
import numpy as np
import argparse
import imutils

cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.resizeWindow('image', 1920, 1080)

def midpoint(ptA, ptB):
	return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
	help="path to the input image")
ap.add_argument("-w", "--width", type=float, required=True,
	help="width of the left-most object in the image (in inches)")
args = vars(ap.parse_args())

# load the image, convert it to grayscale, and blur it slightly
image = cv2.imread(args["image"])
cv2.imshow("image", image)
Beispiel #30
0
import math
from sympy import Point, Line, Circle, intersection, Ray, pi
from cv2 import cv2 as cv
from sympy import plot_implicit, cos, sin, symbols, Eq, And
from sympy import symbols
from sympy.plotting import plot
import matplotlib.pyplot as plt
from numba import jit, cuda


def nothing(x):
    pass


cv.namedWindow('Image', cv.WINDOW_NORMAL)
cv.resizeWindow('Image', 600, 600)


def during_collision(cue_point, radius, stick_point, ball_coord):
    future_point = cue_point
    collision_ball_info = cue_point
    min_distance = 1e9

    temp_ray = Ray(cue_point, stick_point)
    temp_Line = Line(cue_point, stick_point)
    temp_circle = Circle(cue_point, radius)
    temp_collision_points = intersection(temp_Line, temp_circle)

    if temp_ray.contains(temp_collision_points[0]):
        white_ray = Ray(cue_point, temp_collision_points[1])
    else: