Beispiel #1
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        axis = data[0]
        t = lu.create_var(size)

        # sum(exp(x - t)) <= 1
        if axis is None:
            prom_t = lu.promote(t, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)
            obj = lu.sum_entries(obj)

        elif axis == 0:
            prom_size = (x.size[0], 1)
            ones = lu.create_const(np.ones(prom_size), prom_size)
            prom_t = lu.mul_expr(ones, t, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)

            const_size = (1, x.size[0])
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.mul_expr(ones, obj, size)

        else:  # axis == 1
            prom_size = (1, x.size[1])
            ones = lu.create_const(np.ones(prom_size), prom_size)
            prom_t = lu.rmul_expr(t, ones, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)

            const_size = (x.size[1], 1)
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.rmul_expr(obj, ones, size)

        ones = lu.create_const(np.ones(size), size)
        constraints += [lu.create_leq(obj, ones)]

        return (t, constraints)
Beispiel #2
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        axis = data[0]
        t = lu.create_var(size)

        # sum(exp(x - t)) <= 1
        if axis is None:
            prom_t = lu.promote(t, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)
            obj = lu.sum_entries(obj)

        elif axis == 0:
            prom_size = (x.size[0], 1)
            ones = lu.create_const(np.ones(prom_size), prom_size)
            prom_t = lu.mul_expr(ones, t, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)

            const_size = (1, x.size[0])
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.mul_expr(ones, obj, size)

        else:  # axis == 1
            prom_size = (1, x.size[1])
            ones = lu.create_const(np.ones(prom_size), prom_size)
            prom_t = lu.rmul_expr(t, ones, x.size)
            expr = lu.sub_expr(x, prom_t)
            obj, constraints = exp.graph_implementation([expr], x.size)

            const_size = (x.size[1], 1)
            ones = lu.create_const(np.ones(const_size), const_size)
            obj = lu.rmul_expr(obj, ones, size)

        ones = lu.create_const(np.ones(size), size)
        constraints += [lu.create_leq(obj, ones)]

        return (t, constraints)
Beispiel #3
0
 def graph_implementation(arg_objs, size, data=None):
     # min 1-sqrt(2z-z^2)
     # s.t. x>=0, z<=1, z = x+s, s<=0
     x = arg_objs[0]
     z = lu.create_var(size)
     s = lu.create_var(size)
     zeros = lu.create_const(np.mat(np.zeros(size)),size)
     ones = lu.create_const(np.mat(np.ones(size)),size)
     z2, constr_square = power.graph_implementation([z],size, (2, (Fraction(1,2), Fraction(1,2))))
     two_z = lu.sum_expr([z,z])
     sub = lu.sub_expr(two_z, z2)
     sq, constr_sqrt = power.graph_implementation([sub],size, (Fraction(1,2), (Fraction(1,2), Fraction(1,2))))
     obj = lu.sub_expr(ones, sq)
     constr = [lu.create_eq(z, lu.sum_expr([x,s]))]+[lu.create_leq(zeros,x)]+[lu.create_leq(z, ones)]+[lu.create_leq(s,zeros)]+constr_square+constr_sqrt
     return (obj, constr)
Beispiel #4
0
def qol_elemwise(arg_objs, size, data=None):
    """Reduces the atom to an affine expression and list of constraints.

    Parameters
    ----------
    arg_objs : list
        LinExpr for each argument.
    size : tuple
        The size of the resulting expression.
    data :
        Additional data required by the atom.

    Returns
    -------
    tuple
        (LinOp for objective, list of constraints)
    """
    x = arg_objs[0]
    y = arg_objs[1]
    t = lu.create_var(x.size)
    two = lu.create_const(2, (1, 1))
    constraints = [SOC_Elemwise(lu.sum_expr([y, t]),
                                [lu.sub_expr(y, t),
                                 lu.mul_expr(two, x, x.size)]),
                   lu.create_geq(y)]
    return (t, constraints)
Beispiel #5
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        A = arg_objs[0]
        n, _ = A.size
        # Requires that A is symmetric.
        obj, constraints = transpose.graph_implementation([A], (n, n))
        # A == A.T
        constraints.append(lu.create_eq(A, obj))
        # SDP constraint.
        t = lu.create_var((1, 1))
        prom_t = lu.promote(t, (n, 1))
        # I*t - A
        expr = lu.sub_expr(A, lu.diag_vec(prom_t))
        return (t, [SDP(expr)] + constraints)
Beispiel #6
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        # TODO use log for n != 2.
        v = lu.create_var((1, 1))
        x = arg_objs[0]
        y = arg_objs[1]
        two = lu.create_const(2, (1, 1))
        # SOC(x + y, [y - x, 2*v])
        constraints = [
            SOC(lu.sum_expr([x, y]),
                [lu.sub_expr(y, x),
                 lu.mul_expr(two, v, (1, 1))])
        ]
        # 0 <= x, 0 <= y
        constraints += [lu.create_geq(x), lu.create_geq(y)]
        return (v, constraints)
Beispiel #7
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        # Promote scalars.
        for idx, arg in enumerate(arg_objs):
            if arg.size != size:
                arg_objs[idx] = lu.promote(arg, size)
        x = arg_objs[0]
        y = arg_objs[1]
        v = lu.create_var(x.size)
        two = lu.create_const(2, (1, 1))
        # SOC(x + y, [y - x, 2*v])
        constraints = [
            SOC_Elemwise(lu.sum_expr([x, y]),
                         [lu.sub_expr(y, x),
                          lu.mul_expr(two, v, v.size)])
        ]
        # 0 <= x, 0 <= y
        constraints += [lu.create_geq(x), lu.create_geq(y)]
        return (v, constraints)
Beispiel #8
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        A = arg_objs[0]
        n, _ = A.size
        # Requires that A is symmetric.
        obj, constraints = transpose.graph_implementation([A], (n, n))
        # A == A.T
        constraints.append(lu.create_eq(A, obj))
        # SDP constraint.
        t = lu.create_var((1, 1))
        prom_t = lu.promote(t, (n, 1))
        # I*t - A
        expr = lu.sub_expr(A, lu.diag_vec(prom_t))
        return (t, [SDP(expr)] + constraints)
Beispiel #9
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        y = arg_objs[1]
        t = lu.create_var((1, 1))
        constraints = [ExpCone(t, x, y),
                       lu.create_geq(y)] # 0 <= y
        # -t - x + y
        obj = lu.sub_expr(y, lu.sum_expr([x, t]))
        return (obj, constraints)
Beispiel #10
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        t = lu.create_var((1, 1))
        # sum(exp(x - t))
        prom_t = lu.promote(t, x.size)
        expr = lu.sub_expr(x, prom_t)
        obj, constraints = exp.graph_implementation([expr], x.size)
        obj, constr = sum_entries.graph_implementation([obj], (1, 1))
        # obj <= 1
        one = lu.create_const(1, (1, 1))
        constraints += constr + [lu.create_leq(obj, one)]
        return (t, constraints)
Beispiel #11
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        y = arg_objs[1] # Known to be a scalar.
        v = lu.create_var((1, 1))
        two = lu.create_const(2, (1, 1))
        constraints = [SOC(lu.sum_expr([y, v]),
                           [lu.sub_expr(y, v),
                            lu.mul_expr(two, x, x.size)]),
                       lu.create_geq(y)]
        return (v, constraints)
Beispiel #12
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        t = lu.create_var(size)

        # log(1 + exp(x)) <= t <=> exp(-t) + exp(x - t) <= 1
        obj0, constr0 = exp.graph_implementation([lu.neg_expr(t)], size)
        obj1, constr1 = exp.graph_implementation([lu.sub_expr(x, t)], size)
        lhs = lu.sum_expr([obj0, obj1])
        ones = lu.create_const(np.mat(np.ones(size)), size)
        constr = constr0 + constr1 + [lu.create_leq(lhs, ones)]

        return (t, constr)
Beispiel #13
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        A = arg_objs[0]
        n, _ = A.size
        # SDP constraint.
        t = lu.create_var((1, 1))
        prom_t = lu.promote(t, (n, 1))
        # I*t - A
        expr = lu.sub_expr(lu.diag_vec(prom_t), A)
        return (t, [SDP(expr)])
Beispiel #14
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        y = arg_objs[1]  # Known to be a scalar.
        v = lu.create_var((1, 1))
        two = lu.create_const(2, (1, 1))
        constraints = [
            SOC(lu.sum_expr([y, v]),
                [lu.sub_expr(y, v),
                 lu.mul_expr(two, x, x.size)]),
            lu.create_geq(y)
        ]
        return (v, constraints)
Beispiel #15
0
def qol_elemwise(arg_objs, size, data=None):
    """Reduces the atom to an affine expression and list of constraints.

    Parameters
    ----------
    arg_objs : list
        LinExpr for each argument.
    size : tuple
        The size of the resulting expression.
    data :
        Additional data required by the atom.

    Returns
    -------
    tuple
        (LinOp for objective, list of constraints)
    """
    x = arg_objs[0]
    y = arg_objs[1]
    t = lu.create_var(x.size)
    two = lu.create_const(2, (1, 1))
    constraints = [
        SOC_Elemwise(
            lu.sum_expr([y, t]),
            [lu.sub_expr(y, t), lu.mul_expr(two, x, x.size)]),
        lu.create_geq(y)
    ]
    return (t, constraints)
Beispiel #16
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        # Promote scalars.
        for idx, arg in enumerate(arg_objs):
            if arg.size != size:
                arg_objs[idx] = lu.promote(arg, size)
        x = arg_objs[0]
        y = arg_objs[1]
        v = lu.create_var(x.size)
        two = lu.create_const(2, (1, 1))
        # SOC(x + y, [y - x, 2*v])
        constraints = [
            SOC_Elemwise(lu.sum_expr([x, y]),
                         [lu.sub_expr(y, x),
                          lu.mul_expr(two, v, v.size)])
        ]
        # 0 <= x, 0 <= y
        constraints += [lu.create_geq(x), lu.create_geq(y)]
        return (v, constraints)
Beispiel #17
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        t = lu.create_var((1, 1))
        # sum(exp(x - t))
        prom_t = lu.promote(t, x.size)
        expr = lu.sub_expr(x, prom_t)
        obj, constraints = exp.graph_implementation([expr], x.size)
        obj, constr = sum_entries.graph_implementation([obj], (1, 1))
        # obj <= 1
        one = lu.create_const(1, (1, 1))
        constraints += constr + [lu.create_leq(obj, one)]
        return (t, constraints)
Beispiel #18
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        y = arg_objs[1]
        t = lu.create_var((1, 1))
        constraints = [ExpCone(t, x, y),
                       lu.create_geq(y)] # 0 <= y
        # -t - x + y
        obj = lu.sub_expr(y, lu.sum_expr([x, t]))
        return (obj, constraints)
Beispiel #19
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        t = lu.create_var(size)

        # log(1 + exp(x)) <= t <=> exp(-t) + exp(x - t) <= 1
        obj0, constr0 = exp.graph_implementation([lu.neg_expr(t)], size)
        obj1, constr1 = exp.graph_implementation([lu.sub_expr(x, t)], size)
        lhs = lu.sum_expr([obj0, obj1])
        ones = lu.create_const(np.mat(np.ones(size)), size)
        constr = constr0 + constr1 + [lu.create_leq(lhs, ones)]

        return (t, constr)
Beispiel #20
0
def gm(t, x, y):
    length = t.size[0] * t.size[1]
    return SOC_Axis(
        lu.reshape(lu.sum_expr([x, y]), (length, 1)),
        lu.vstack([
            lu.reshape(lu.sub_expr(x, y), (1, length)),
            lu.reshape(lu.mul_expr(two, t, t.size), (1, length))
        ], (2, length)), 0)
Beispiel #21
0
    def graph_implementation(arg_objs, size, data=None):
        """Reduces the atom to an affine expression and list of constraints.

        Parameters
        ----------
        arg_objs : list
            LinExpr for each argument.
        size : tuple
            The size of the resulting expression.
        data :
            Additional data required by the atom.

        Returns
        -------
        tuple
            (LinOp for objective, list of constraints)
        """
        x = arg_objs[0]
        t = lu.create_var(size)

        # log(1 + exp(x)) <= t <=> exp(-t) + exp(x - t) <= 1
        '''
        obj0, constr0 = exp.graph_implementation([lu.neg_expr(t)], size)
        obj1, constr1 = exp.graph_implementation([lu.sub_expr(x, t)], size)
        lhs = lu.sum_expr([obj0, obj1])
        ones = lu.create_const(np.mat(np.ones(size)), size)
        constr = constr0 + constr1 + [lu.create_leq(lhs, ones)]
        '''
        s = data[0]
        if isinstance(s, Parameter):
            s = lu.create_param(s, (1, 1))
        else: # M is constant.
            s = lu.create_const(s, (1, 1))

        #Wrong sign?
        obj0, constr0 = exp.graph_implementation([lu.neg_expr(t)], size)
        obj1, constr1 = exp.graph_implementation([lu.sub_expr(s, lu.sum_expr([t, x]))], size)
        obj2, constr2 = exp.graph_implementation([lu.sub_expr(lu.neg_expr(s), lu.sum_expr([t, x]))], size)
        obj3, constr3 = exp.graph_implementation([lu.sub_expr(lu.neg_expr(t), lu.mul_expr(2, x, size))], size)

        lhs = lu.sum_expr([obj0, obj1, obj2, obj3])
        ones = lu.create_const(np.mat(np.ones(size)), size)
        constr = constr0 + constr1 + constr2 + constr3 + [lu.create_leq(lhs, ones)]


        return (t, constr)
Beispiel #22
0
def gm(t, x, y):
    length = t.size[0]*t.size[1]
    return SOC_Axis(lu.reshape(lu.sum_expr([x, y]), (length, 1)),
                    lu.vstack([
                        lu.reshape(lu.sub_expr(x, y), (1, length)),
                        lu.reshape(lu.mul_expr(two, t, t.size), (1, length))
                        ], (2, length)),
                    0)
Beispiel #23
0
 def graph_implementation(arg_objs, size, data=None):
     # min 1-sqrt(2z-z^2)
     # s.t. x>=0, z<=1, z = x+s, s<=0
     x = arg_objs[0]
     z = lu.create_var(size)
     s = lu.create_var(size)
     zeros = lu.create_const(np.mat(np.zeros(size)), size)
     ones = lu.create_const(np.mat(np.ones(size)), size)
     z2, constr_square = power.graph_implementation(
         [z], size, (2, (Fraction(1, 2), Fraction(1, 2))))
     two_z = lu.sum_expr([z, z])
     sub = lu.sub_expr(two_z, z2)
     sq, constr_sqrt = power.graph_implementation(
         [sub], size, (Fraction(1, 2), (Fraction(1, 2), Fraction(1, 2))))
     obj = lu.sub_expr(ones, sq)
     constr = [lu.create_eq(z, lu.sum_expr([x, s]))] + [
         lu.create_leq(zeros, x)
     ] + [lu.create_leq(z, ones)] + [lu.create_leq(s, zeros)
                                     ] + constr_square + constr_sqrt
     return (obj, constr)
Beispiel #24
0
def gm(t, x, y):
    return SOC_Elemwise(lu.sum_expr([x, y]),
               [lu.sub_expr(x, y),
                lu.mul_expr(two, t, t.size)])