def test_ConnectOptions(self): """ConnectOptions""" nest.ResetKernel() copts = nest.sli_func('GetOptions', '/RandomConvergentConnect', litconv=True) dopts = nest.sli_func('GetOptions', '/RandomDivergentConnect', litconv=True) ncopts = dict([(k, not v) for k,v in copts.items() if k != 'DefaultOptions']) ndopts = dict([(k, not v) for k,v in dopts.items() if k != 'DefaultOptions']) n = nest.Create('iaf_neuron', 3) nest.RandomConvergentConnect(n, n, 1, options=ncopts) nest.RandomDivergentConnect (n, n, 1, options=ndopts) self.assertEqual(copts, nest.sli_func('GetOptions', '/RandomConvergentConnect', litconv=True)) self.assertEqual(dopts, nest.sli_func('GetOptions', '/RandomDivergentConnect', litconv=True))
def ComputePSPnorm(tauMem, CMem, tauSyn): """Compute the maximum of postsynaptic potential for a synaptic input current of unit amplitude (1 pA)""" a = (tauMem / tauSyn) b = (1.0 / tauSyn - 1.0 / tauMem) # time of maximum t_max = 1.0/b * ( -nest.sli_func('LambertWm1',-exp(-1.0/a)/a) - 1.0/a ) # maximum of PSP for current of unit amplitude return exp(1.0)/(tauSyn*CMem*b) * ((exp(-t_max/tauMem) - exp(-t_max/tauSyn)) / b - t_max*exp(-t_max/tauSyn))