Beispiel #1
0
def evaluate_accuracy_gpu(net, data_iter, device=None):
    net.eval()
    if not device:
        device = next(iter(net.parameters())).device
    metric = d2l.Accumulator(2)
    for X, y in data_iter:
        X, y = X.to(device), y.to(device)
        metric.add(d2l.accuracy(net(X), y), d2l.size(y))
    return metric[0] / metric[1]
Beispiel #2
0
def train_model(net,
                train_iter,
                test_iter,
                num_epochs,
                lr,
                device=d2l.try_gpu()):
    # for idx, (X, y) in enumerate(train_iter):
    """Train and evaluate a model with CPU or GPU."""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            torch.nn.init.xavier_uniform_(m.weight)  # Part 2.2

    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.BCELoss()
    animator = d2l.Animator(xlabel='epoch',
                            xlim=[0, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])

    timer = d2l.Timer()
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)  # train_loss, train_acc, num_examples
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            net.train()
            optimizer.zero_grad()
            X = X.float()
            X, y = X.to(device), y.to(device)
            output = net(X)
            # y_hat = torch.round(torch.exp(output)/(1+torch.exp(output)))
            y_hat = torch.sigmoid(output)
            y = y.to(torch.float)
            y = torch.unsqueeze(y, 1)
            l = loss(y_hat, y.type(torch.float32))  #.type(torch.float32)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_loss, train_acc = metric[0] / metric[2], metric[1] / metric[2]
            if (i + 1) % 50 == 0:
                animator.add(epoch + i / len(train_iter),
                             (train_loss, train_acc, None))
                print(
                    "BatchNo.=%3i, Epoch No.=%3i, loss=%.3f, train acc=%.3f" %
                    (i + 1, epoch + 1, train_loss, train_acc))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        print("test_acc=", test_acc)
        animator.add(epoch + 1, (None, None, test_acc))
    print('loss %.3f, train acc %.3f, test acc %.3f' %
          (train_loss, train_acc, test_acc))
    print('%.1f examples/sec on %s' %
          (metric[2] * num_epochs / timer.sum(), device))
Beispiel #3
0
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)
    Defined in :numref:`sec_lenet`"""
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch',
                            xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer = d2l.Timer()
    num_batches = len(train_iter)
    multiplier_anim = max(1, num_batches // 5)
    multiplier_save = max(1, num_epochs // 10)
    for epoch in tqdm(range(num_epochs)):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % multiplier_anim == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        if test_iter is not None:
            test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        else:
            test_acc = 0
        animator.add(epoch + 1, (None, None, test_acc))

        # save net state_dict
        if epoch == epochs - 1 or (epoch + 1) % multiplier_save == 0:
            net_param_file = 'net_param_{:d}.pth'.format(epoch)
            path_net = os.path.join(net_save_dir, net_param_file)
            torch.save(net.state_dict(), path_net)
            print('net param saved to \n\t{}'.format(path_net))

    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')
Beispiel #4
0
def evaluate_accuracy_gpu(net, data_iter, device=None):  #@save
    """Compute the accuracy for a model on a dataset using a GPU."""
    if isinstance(net, torch.nn.Module):
        net.eval()  # Set the model to evaluation mode
        if not device:
            device = next(iter(net.parameters())).device
    # No. of correct predictions, no. of predictions
    metric = d2l.Accumulator(2)
    for X, y in data_iter:
        if isinstance(X, list):
            # Required for BERT Fine-tuning (to be covered later)
            X = [x.to(device) for x in X]
        else:
            X = X.to(device)
        y = y.to(device)
        metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
Beispiel #5
0
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
Beispiel #6
0
def train_ch6(net, train_iter, test_iter, num_epochs, lr,
              device=d2l.try_gpu()):
    """Train a model with a GPU (defined in Chapter 6)."""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)

    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch',
                            xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')
    plt.show()
Beispiel #7
0
def train_func(net,
               train_iter,
               test_iter,
               num_epochs,
               lr,
               device=d2l.try_gpu()):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            torch.nn.init.xavier_uniform_(m.weight)

    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    timer = d2l.Timer()
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            net.train()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_loss = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % 50 == 0:
                print(f"epoch: {epoch} --- iter: {i} --- of {len(train_iter)}")
                print(f"train loss: {train_loss} --- train acc: {train_acc}")
        test_acc = evaluate_accuracy_gpu(net, test_iter)
    print(f'loss {train_loss:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')