Beispiel #1
0
def optimize_for_gpu(sdfg: dace.SDFG, m: int, n: int, k: int):
    """ Optimize the matrix multiplication example for GPUs. """
    # Ensure integers are 32-bit by default
    dace.Config.set('compiler', 'default_data_types', value='C')

    # Fuse the map and reduce nodes
    sdfg.apply_transformations(MapReduceFusion)

    # Apply GPU transformation
    sdfg.apply_gpu_transformations()

    # Find multiplication map
    entry = find_map_by_param(sdfg, 'k')

    # Create a tiling strategy
    divides_evenly = (m % 64 == 0) and (n % 64 == 0) and (k % 8 == 0)
    xfutil.tile(sdfg, entry, divides_evenly, True, i=64, j=64, k=8)
    xfutil.tile(sdfg, entry, divides_evenly, True, i=8, j=4)

    # Create kernel schedule by collapsing and reordering maps
    gtile_i = find_map_by_param(sdfg, 'tile_i')
    gtile_j = find_map_by_param(sdfg, 'tile_j')
    btile_i = find_map_by_param(sdfg, 'tile1_i')
    btile_j = find_map_by_param(sdfg, 'tile1_j')
    MapCollapse.apply_to(sdfg, outer_map_entry=gtile_i, inner_map_entry=gtile_j, permissive=True)
    MapCollapse.apply_to(sdfg, outer_map_entry=btile_i, inner_map_entry=btile_j, permissive=True)
    btile = find_map_by_param(sdfg, 'tile1_i')
    btile.map.schedule = dace.ScheduleType.GPU_ThreadBlock

    # Add local storage (shared memory) for A and B on GPU
    ktile = find_map_by_param(sdfg, 'tile_k')
    smem_a = InLocalStorage.apply_to(sdfg, dict(array='A'), node_a=ktile, node_b=btile)
    smem_b = InLocalStorage.apply_to(sdfg, dict(array='B'), node_a=ktile, node_b=btile)
    sdfg.arrays[smem_a.data].storage = dace.StorageType.GPU_Shared
    sdfg.arrays[smem_b.data].storage = dace.StorageType.GPU_Shared

    # Add local storage (registers) for A and B
    ttile = find_map_by_param(sdfg, 'k')
    warptile, ttile = xfutil.extract_map_dims(sdfg, ttile, [2])
    InLocalStorage.apply_to(sdfg, dict(array='trans_gpu_A'), node_a=warptile, node_b=ttile)
    InLocalStorage.apply_to(sdfg, dict(array='trans_gpu_B'), node_a=warptile, node_b=ttile)

    # Add local storage (registers) for C
    state = next(s for s in sdfg.nodes() if warptile in s.nodes())
    warptile_exit = state.exit_node(warptile)
    btile_exit = state.exit_node(btile)
    AccumulateTransient.apply_to(sdfg, map_exit=warptile_exit, outer_map_exit=btile_exit)
    # Set C tile to zero on allocation
    c_access = next(n for n in state.data_nodes() if n.data == 'trans_gpu_C')
    c_access.setzero = True

    # Unroll microkernel maps
    ttile.map.unroll = True

    # Apply double-buffering on shared memory
    DoubleBuffering.apply_to(sdfg, map_entry=ktile, transient=smem_a)
Beispiel #2
0
def tile_wcrs(graph_or_subgraph: GraphViewType,
              validate_all: bool,
              prefer_partial_parallelism: bool = None) -> None:
    """
    Tiles parallel write-conflict resolution maps in an SDFG, state,
    or subgraphs thereof. Reduces the number of atomic operations by tiling
    and introducing transient arrays to accumulate atomics on.
    :param graph_or_subgraph: The SDFG/state/subgraph to optimize within.
    :param validate_all: If True, runs SDFG validation after every tiling.
    :param prefer_partial_parallelism: If set, prefers extracting non-conflicted
                                       map dimensions over tiling WCR map (may
                                       not perform well if parallel dimensions
                                       are small).
    :note: This function operates in-place.
    """
    # Avoid import loops
    from dace.codegen.targets import cpp
    from dace.frontend import operations
    from dace.transformation import dataflow, helpers as xfh

    # Determine on which nodes to run the operation
    graph = graph_or_subgraph
    if isinstance(graph_or_subgraph, gr.SubgraphView):
        graph = graph_or_subgraph.graph
    if isinstance(graph, SDFG):
        for state in graph_or_subgraph.nodes():
            tile_wcrs(state, validate_all)
        return
    if not isinstance(graph, SDFGState):
        raise TypeError(
            'Graph must be a state, an SDFG, or a subgraph of either')
    sdfg = graph.parent

    edges_to_consider: Set[Tuple[gr.MultiConnectorEdge[Memlet],
                                 nodes.MapEntry]] = set()
    for edge in graph_or_subgraph.edges():
        if edge.data.wcr is not None:
            if (isinstance(edge.src, (nodes.MapExit, nodes.NestedSDFG))
                    or isinstance(edge.dst, nodes.MapEntry)):
                # Do not consider intermediate edges
                continue
            reason = cpp.is_write_conflicted_with_reason(graph, edge)
            if reason is None or not isinstance(reason, nodes.MapEntry):
                # Do not consider edges that will not generate atomics or
                # atomics we cannot transform
                continue
            if reason not in graph_or_subgraph.nodes():
                # Skip if conflict exists outside of nested SDFG
                continue

            # Check if identity value can be inferred
            redtype = operations.detect_reduction_type(edge.data.wcr)
            dtype = sdfg.arrays[edge.data.data].dtype
            identity = dtypes.reduction_identity(dtype, redtype)
            if identity is None:  # Cannot infer identity value
                continue

            edges_to_consider.add((edge, reason))

    tile_size = config.Config.get('optimizer', 'autotile_size')
    debugprint = config.Config.get_bool('debugprint')
    if prefer_partial_parallelism is None:
        prefer_partial_parallelism = config.Config.get_bool(
            'optimizer', 'autotile_partial_parallelism')

    maps_to_consider: Set[nodes.MapEntry] = set(me
                                                for _, me in edges_to_consider)

    transformed: Set[nodes.MapEntry] = set()

    # Heuristic: If the map is only partially conflicted, extract
    # parallel dimensions instead of tiling
    if prefer_partial_parallelism:
        for mapentry in maps_to_consider:
            # Check the write-conflicts of all WCR edges in map
            conflicts: Set[str] = set()
            for edge, me in edges_to_consider:
                if me is not mapentry:
                    continue
                conflicts |= set(
                    cpp.write_conflicted_map_params(mapentry, edge))

            nonconflicted_dims = set(mapentry.params) - conflicts
            if nonconflicted_dims:
                dims = [
                    i for i, p in enumerate(mapentry.params)
                    if p in nonconflicted_dims
                ]
                if ((dt._prod(s for i, s in enumerate(mapentry.range.size())
                              if i in dims) < tile_size) == True):
                    # Map has a small range, extracting parallelism may not be
                    # beneficial
                    continue
                xfh.extract_map_dims(sdfg, mapentry, dims)
                transformed.add(mapentry)

    # Tile and accumulate other not-transformed maps
    for edge, mapentry in edges_to_consider:
        if mapentry in transformed:
            continue
        transformed.add(mapentry)

        # NOTE: The test "(x < y) == True" below is crafted for SymPy
        # to be "definitely True"
        if all((s < tile_size) == True for s in mapentry.map.range.size()):
            # If smaller than tile size, don't transform and instead
            # make map sequential
            if debugprint:
                print(f'Making map "{mapentry}" sequential due to being '
                      'smaller than tile size')
            mapentry.map.schedule = dtypes.ScheduleType.Sequential
            continue

        # MapTiling -> AccumulateTransient / AccumulateStream
        outer_mapentry = dataflow.MapTiling.apply_to(
            sdfg, dict(tile_sizes=(tile_size, )), map_entry=mapentry)

        # Transform all outgoing WCR and stream edges
        mapexit = graph.exit_node(mapentry)
        outer_mapexit = graph.exit_node(outer_mapentry)

        # Tuple of (transformation type, options, pattern)
        to_apply: Tuple[Union[dataflow.StreamTransient,
                              dataflow.AccumulateTransient], Dict[str, Any],
                        Dict[str, nodes.Node]] = None
        for e in graph.out_edges(mapexit):
            if isinstance(sdfg.arrays[e.data.data], dt.Stream):
                mpath = graph.memlet_path(e)
                tasklet = mpath[0].src
                if not isinstance(tasklet, nodes.Tasklet) or len(mpath) != 3:
                    # TODO(later): Implement StreamTransient independently of tasklet
                    continue

                # Make transient only if there is one WCR/stream
                if to_apply is not None:
                    to_apply = None
                    break

                to_apply = (dataflow.StreamTransient, {},
                            dict(tasklet=tasklet,
                                 map_exit=mapexit,
                                 outer_map_exit=outer_mapexit))
            else:
                if (e.data.is_empty() or e.data.wcr is None
                        or e.data.wcr_nonatomic
                        or (e.data.dst_subset is not None
                            and e.data.dst_subset.num_elements() > 0
                            and e.data.dynamic)):
                    continue

                dtype = sdfg.arrays[e.data.data].dtype
                redtype = operations.detect_reduction_type(e.data.wcr)
                identity = dtypes.reduction_identity(dtype, redtype)
                if identity is None:  # Cannot infer identity value
                    continue
                # Make transient only if there is one WCR/stream
                if to_apply is not None:
                    to_apply = None
                    break

                to_apply = (dataflow.AccumulateTransient,
                            dict(identity=identity, array=e.data.data),
                            dict(map_exit=mapexit,
                                 outer_map_exit=outer_mapexit))
        if to_apply is not None:
            xform, opts, pattern = to_apply
            xform.apply_to(sdfg, options=opts, **pattern)

    if debugprint and len(transformed) > 0:
        print(f'Optimized {len(transformed)} write-conflicted maps')