import json
from dagon import Workflow
from dagon import batch
from dagon import docker_task as dt
if __name__ == '__main__':

  config={
    "scratch_dir_base":"/tmp/test",
    "remove_dir":False
  }

  # Create the orchestration workflow
  workflow=Workflow("Taskflow-Demo",config)

  taskA=dt.Docker("Tokio","/bin/hostname >tokio.out", "ubuntu:latest")
  taskB=dt.Docker("Berlin","/bin/date", "ubuntu:latest")
  taskC=dt.Docker("Nairobi","/usr/bin/uptime", "ubuntu:latest")
  taskD=dt.Docker("Mosco","cat workflow://Tokio/tokio.out", "ubuntu:latest")

  workflow.add_task(taskA)
  workflow.add_task(taskB)
  workflow.add_task(taskC)
  workflow.add_task(taskD)

  taskB.add_dependency_to(taskA)
  taskC.add_dependency_to(taskA)
  taskD.add_dependency_to(taskB)
  taskD.add_dependency_to(taskC)

  jsonWorkflow=workflow.asJson()
  with open('taskflow-demo-docker.json', 'w') as outfile:
Beispiel #2
0
import os

from dagon import Workflow
from dagon.task import DagonTask, TaskType


# Check if this is the main
if __name__ == '__main__':

    config = {
        "scratch_dir_base": "/tmp/test6",
        "remove_dir": False
    }

    # Create the orchestration workflow
    workflow = Workflow("DataFlow-Demo-Server")

    # Set the dry
    workflow.set_dry(False)

    # The task a
    taskA = DagonTask(TaskType.BATCH, "A", "mkdir output;hostname > output/f1.txt")

    # The task b
    taskB = DagonTask(TaskType.BATCH, "B", "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.txt >> f2.txt")

    # The task c
    taskC = DagonTask(TaskType.BATCH, "C", "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.txt >> f2.txt")

    # The task d
    taskD = DagonTask(TaskType.BATCH, "D", "cat workflow:///B/f2.txt >> f3.txt; cat workflow:///C/f2.txt >> f3.txt")
Beispiel #3
0
import logging

logging.debug('This message should go to the log file')
logging.info('So should this')
logging.warning('And this, too')

# Check if this is the main
if __name__ == '__main__':

    # Create the orchestration workflow
    filename = "./jsons/MW-demo.json"
    with open(filename, 'r') as f:
        datastore = json.load(f)

    workflow = Workflow("NEW-DAGT_PS", jsonload=datastore)
    # Set the dry
    workflow.set_dry(False)
    #load json to a workflow

    workflow.make_dependencies()

    jsonWorkflow = workflow.as_json()
    with open('./jsons/NEW-Meta-workflow.json', 'w') as outfile:
        stringWorkflow = json.dumps(jsonWorkflow, sort_keys=True, indent=2)
        outfile.write(stringWorkflow)

    # run the workflow
    workflow.run()

    # if workflow.get_dry() is False:
import logging

logging.debug('This message should go to the log file')
logging.info('So should this')
logging.warning('And this, too')

# Check if this is the main
if __name__ == '__main__':

    config = {
        "scratch_dir_base": "/tmp/test6",
        "remove_dir": False
    }

    # Create the orchestration workflow
    workflow = Workflow("DataFlow-Demo-Server")

    # Set the dry
    workflow.set_dry(False)

    # The task a
    taskA = DagonTask(TaskType.BATCH, "A", "mkdir output;cat /tmp/pruebas/conHeaders.csv > output/f1.csv")

    # The task b
    taskB = DagonTask(TaskType.BATCH, "B", "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.csv >> f2.txt")

    # The task c
    taskC = DagonTask(TaskType.BATCH, "C", "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.csv >> f2.txt")

    # The task d
    taskD = DagonTask(TaskType.BATCH, "D", "cat workflow:///B/f2.txt >> f3.txt; cat workflow:///C/f2.txt >> f3.txt")
if __name__ == '__main__':

    command_dir = sys.argv[1]
    no_TPS = int(sys.argv[2])
    iterations = 1

    logfile = open("../logs/" + str(no_TPS) + "_TPS_test.txt", "a+")
    logfile.write("building,validation,runtime,extraction,processing,\n")

    # Create the orchestration workflow
    for i in range(0, iterations):

        meta_workflow = DAG_TPS("DAGtp_2WF_" + str(no_TPS) + "TPS")
        start_building = time.time()

        wf_a = Workflow("TestTPS_WFa")
        taskA = DagonTask(
            TaskType.BATCH, "AdquisitionA", "cp -r " + command_dir +
            "/launcher/lib $PWD;java -jar " + command_dir +
            "launcher/launcher.jar 1 1 01-01-2019 02-01-2019 $PWD/ adq_tps_a")
        taskB = DockerTask(
            "InterpolationA",
            "python /home/Interpolacion.py -i workflow:///AdquisitionA/metadata/FilesNc -w 1 ",
            image="module_interpolation:v1")
        taskC = DockerTask(
            "UploaderA",
            "python /home/upload.py -i workflow:///InterpolationA/output -w 1 ",
            image="module_todb:v1")

        wf_b = Workflow("TestTPS_WFb")
        taskD = DagonTask(
Beispiel #6
0
import logging

logging.debug('This message should go to the log file')
logging.info('So should this')
logging.warning('And this, too')

# Check if this is the main
if __name__ == '__main__':

    config = {"scratch_dir_base": "/tmp/test6", "remove_dir": False}

    #second workflow
    while (True):
        try:
            workflow2 = Workflow("wf2-transversal-demo")
            workflow2.set_dry(False)
            # The task E
            taskE = DagonTask(TaskType.BATCH, "E",
                              "mkdir output;hostname > output/f1.txt")

            # The task f
            taskF = DagonTask(
                TaskType.BATCH, "F",
                "echo $RANDOM > f2.txt; cat workflow://wf1-transversal-demo/A/output/f1.txt >> f2.txt; cat workflow:///E/output/f1.txt >> f2.txt"
            )

            # The task g
            taskG = DagonTask(
                TaskType.BATCH, "G",
                "cat workflow:///F/f2.txt >> f3.txt; cat workflow://wf1-transversal-demo/C/f2.txt >> f3.txt"
from dagon.docker_task import DockerTask
from dagon import Status
from dagon.dag_tps import DAG_TPS
import sys
# Check if this is the main
if __name__ == '__main__':

    command_dir = sys.argv[1]
    init_date = sys.argv[2]
    end_date = sys.argv[3]
    workflow_id = int(sys.argv[4])
    no_workflows = sys.argv[5]

    # Create the orchestration workflow

    workflow = Workflow("DAGtp_wf_" + str(workflow_id))

    #create list of dependencies to interpolation
    adquisition_list = "'"
    for i in range(1, workflow_id + 1):
        workflow_name = "DAGtp_wf_" + str(i)
        adquisition_list += "workflow://%s/Adquisition%s/metadata/FilesNc '" % (
            workflow_name, i)

        adquisition_list = adquisition_list[:-1]
        adquisition_list += ","

    adquisition_list = adquisition_list[:-1]
    adquisition_list += "'"

    start_building = time.time()
    # -------------- DISTRIBUTED TRANSVERSAL WORKER 1 ------------------ #
    #command_dir = "/home/robot/Escritorio/Projects/Crawlers/Merra_Master/"
    command_dir = sys.argv[1]
    init_date = sys.argv[2]
    end_date = sys.argv[3]
    iterations = str(sys.argv[4])  #also iterations
    # Create the orchestration workflow
    if not os.path.exists("../logs/"):
        os.makedirs("../logs/")

    logfile = open("../logs/TDW1-" + iterations + ".txt", "a+")
    logfile.write("building,validation,runtime\n")

    for i in range(1, int(iterations) + 1):
        workflow = Workflow("TDW1-" + str(i))

        # The tasks
        start_building = time.time()
        taskA = DagonTask(
            TaskType.BATCH, "Adquisition",
            "cp -r " + command_dir + "/launcher/lib $PWD;\
            java -jar " + command_dir + "launcher/launcher.jar 1 1 " +
            init_date + " " + end_date + " $PWD/ aqdw_" + str(i))
        taskB = DockerTask(
            "Interpolation",
            "python /home/Interpolacion.py -i workflow:///Adquisition/metadata/FilesNc -w 1 ",
            image="module_interpolation:v1")
        taskC = DockerTask(
            "Uploader",
            "python /home/upload.py -i workflow:///Interpolation/output -w 1 ",
Beispiel #9
0
from libcloud.compute.types import Provider

from dagon import Workflow, Batch
from dagon.docker_task import DockerTask
from dagon.remote import CloudTask
from dagon.cloud import KeyOptions
from dagon.task import DagonTask, TaskType

if __name__ == '__main__':

    # Create the orchestration workflow
    workflow = Workflow("CONAGUASlurm5")

    # ACQUISITION PHASE

    acq_cores = 16
    acq_state = "yuc camp qroo"
    acq_partitions = 10
    acq_volume = "data"
    acq_command = "java -jar acquisition.jar %d %d %s %s" % (acq_cores, acq_partitions, acq_state, acq_volume)

    task_acquisition = DagonTask(TaskType.BATCH, "ACQ" ,acq_command, ip="148.247.201.227", ssh_username="******",
                                 working_dir="/home/hreyes/pruebas_dante/tasks/acquisition")
    # PARSING PHASE
    parsing_input = "workflow:///ACQ/%s/documentos/lote" % acq_volume
    parsing_command = "python /home/task/parser.py -i %s -o res"

    workflow.add_task(task_acquisition)

    for i in range(1, acq_partitions + 1):
        input_element = parsing_input + str(i)
Beispiel #10
0
import logging

logging.debug('This message should go to the log file')
logging.info('So should this')
logging.warning('And this, too')

# Check if this is the main
if __name__ == '__main__':

    config = {
        "scratch_dir_base": "/tmp/test6",
        "remove_dir": False
    }

    # Create the orchestration workflow
    workflow = Workflow("TPw1")

    # Set the dry
    workflow.set_dry(False)

    # The task a
    taskA = DagonTask(TaskType.BATCH, "A", "sleep 1; mkdir output;cat /tmp/pruebas/conHeaders.csv > output/f1.csv")

    # The task b
    taskB = DagonTask(TaskType.BATCH, "B", "sleep 1; echo $RANDOM > f2.txt; cat workflow:///A/output/f1.csv >> f2.txt")

    # The task c
    taskC = DagonTask(TaskType.BATCH, "C", "sleep 1; echo $RANDOM > f2.txt; cat workflow:///A/output/f1.csv >> f2.txt")

    # The task d
    taskD = DagonTask(TaskType.BATCH, "D", "sleep 1; cat workflow:///B/f2.txt >> f3.txt; cat workflow:///C/f2.txt >> f3.txt")
Beispiel #11
0
from dagon.dag_tps import DAG_TPS
from dagon.task import DagonTask, TaskType

import logging

logging.debug('This message should go to the log file')
logging.info('So should this')
logging.warning('And this, too')

# Check if this is the main
if __name__ == '__main__':

    config = {"scratch_dir_base": "/tmp/test6", "remove_dir": False}

    # Create the orchestration workflow
    workflow = Workflow("wf1-transversal-demo")

    # Set the dry
    workflow.set_dry(False)

    # The task a
    taskA = DagonTask(TaskType.BATCH, "A",
                      "mkdir output;hostname > output/f1.txt")

    # The task b
    taskB = DagonTask(
        TaskType.BATCH, "B",
        "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.txt >> f2.txt;sleep 10"
    )

    # The task c
from dagon.dag_tps import DAG_TPS
from dagon.task import DagonTask, TaskType

import logging

logging.debug('This message should go to the log file')
logging.info('So should this')
logging.warning('And this, too')

# Check if this is the main
if __name__ == '__main__':

    config = {"scratch_dir_base": "/tmp/test6", "remove_dir": False}

    # Create the orchestration workflow
    workflow = Workflow("WF-1")

    # Set the dry
    workflow.set_dry(False)

    # The task a
    taskA = DagonTask(
        TaskType.BATCH, "A",
        "$SC:5 ;mkdir output;hostname > output/f1.txt; cat workflow://WF-3/H/output/f1.txt >> output/f1.txt"
    )

    # The task b
    taskB = DagonTask(
        TaskType.BATCH, "B",
        "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.txt >> f2.txt")
    for i in range(0,iterations):
        init_date = sys.argv[2]
        end_date = sys.argv[3]
        
        idate = datetime.strptime(init_date, '%d-%m-%Y')
        edate = datetime.strptime(end_date, '%d-%m-%Y')
        daterange = (edate-idate)/no_workflows
        start_building = time.time()

        meta_workflow = DAG_TPS("DAGtp_"+str(no_workflows)+"_workflows")
        adquisition_list = "'"
        for i in range(1,no_workflows+1):
            init_date = idate.strftime('%d-%m-%Y')
            end_date = (idate + daterange).strftime('%d-%m-%Y')
            workflow_name = "Merra-Docker_%s" %(i)
            workflow = Workflow(workflow_name)
            adquisition_list += "workflow://%s/Adquisition%s/metadata/FilesNc '" %(workflow_name,i)

            taskA = DagonTask(TaskType.BATCH, "Adquisition"+str(i) , "cp -r "+command_dir+"/launcher/lib $PWD;java -jar "+command_dir+"launcher/launcher.jar 1 1 "+str(init_date)+" "+str(end_date)+" $PWD/ aqui"+str(i))
            # The task b
            taskB = DockerTask("Interpolation"+str(i), "python /home/Interpolacion.py -i "+adquisition_list+" -w 1 ", image="module_interpolation:v1")
            
            taskC = DockerTask("Uploader"+str(i), "python /home/upload.py -i workflow:///Interpolation"+str(i)+"/output -w 1 ", image="module_todb:v1")
            # add tasks to the workflow
            workflow.add_task(taskA)
            workflow.add_task(taskB)
            workflow.add_task(taskC)
            meta_workflow.add_workflow(workflow)
            adquisition_list = adquisition_list[:-1]
            adquisition_list+=","
            idate = datetime.strptime(end_date, '%d-%m-%Y') + timedelta(days=1) ##adding 1 day
Beispiel #14
0
import json
import os.path
import time
from dagon import Workflow
from dagon.docker_task import DockerTask
from dagon import Status

# Check if this is the main
if __name__ == '__main__':

    # Create the orchestration workflow
    workflow = Workflow("DataFlow-Demo-Docker-remote-docker-2")

    # The task a
    taskA = DockerTask("A",
                       "mkdir output;hostname > output/f1.txt",
                       image="ubuntu_curl",
                       ip="ec2-34-219-189-203.us-west-2.compute.amazonaws.com",
                       ssh_username="******",
                       keypath="dagon_services.pem")

    # The task b
    taskB = DockerTask(
        "B",
        "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.txt >> f2.txt",
        "ubuntu_curl",
        ip="ec2-34-219-189-203.us-west-2.compute.amazonaws.com",
        ssh_username="******",
        keypath="dagon_services.pem")

    # The task c
import json
import os.path
import time
from dagon import Workflow
from dagon.docker_task import DockerTask
from dagon import Status

# Check if this is the main
if __name__ == '__main__':

    # Create the orchestration workflow
    workflow = Workflow("DataFlow-Demo-Docker")

    # The task a
    taskA = DockerTask("A",
                       "mkdir output;hostname > output/f1.txt",
                       image="ubuntu_curl")

    # The task b
    taskB = DockerTask(
        "B",
        "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.txt >> f2.txt",
        "ubuntu_curl")

    # The task c
    taskC = DockerTask(
        "C",
        "echo $RANDOM > f2.txt; cat workflow:///A/output/f1.txt >> f2.txt",
        "ubuntu_curl")

    # The task d
    end_date = start_date + time_delta

    # The final date in NCEP format
    f_date = end_date.strftime("%Y%m%dZ%H")

    # Initialization data path
    data_dir = data_dir_base + start_date.strftime(
        "%Y%m%d") + "/" + start_date.strftime(
            "%Y%m%d") + "Z" + start_date.strftime("%H")

    # Initial and final simulation dates in WRF format
    initial = start_date.strftime("%Y-%m-%d_%H:%M:%S")
    final = end_date.strftime("%Y-%m-%d_%H:%M:%S")

    # Create the orchestration workflow
    workflow = Workflow("CCMMMA")

    # Some beauty logging
    workflow.logger.info("initialization date: %s", i_date)
    workflow.logger.info("data dir: %s", data_dir)
    workflow.logger.info("initial: %s", initial)
    workflow.logger.info("final: %s", final)

    # The makeWpsNamelist task executed locally
    taskMakeWpsNameList = batch.Batch(
        "makeWpsNameList", command_dir_base + "/makeWpsNamelist." + wrf_model +
        " " + initial + " " + final)

    # The geogrid task executed using Slurm
    taskGeogrid = Slurm(
        "geogrid", command_dir_base + "/geogrid " + i_date +
Beispiel #17
0
  #Images configuration
  defaultflavour = {"image":"ami-0bbe6b35405ecebdb","size":"t1.micro"} #EC2
  digitalOceanFlavour = {"image":"38897365","size":"1gb","location":"nyc1"} #Digital ocean
  googleFlavour = {"image":'debian-7',"size":"n1-standard-1","location":"us-east1-b"} #google

  keysshparams = {"option":KeyOptions.GET,"keyname":"test-key","keypath":"test-key.pem","cloudargs":{"name":"test-key"}}
  keysDO =  KeyPair.generate_RSA()

  googleKeyParams = {"keypath":"googlekey.pem","username":"******","public_key":keysDO[1],"private_key":keysDO[0]}

  keysshparams3 = {"option":KeyOptions.GET,"keyname":"dagonkey","keypath":"dagonkey.pem","cloudargs":{"name":"dagonkey"}}
  
  keysshparams2 = {"option":KeyOptions.CREATE,"keypath":"dagonDOkey.pem",
                    "cloudargs":{"name":"dagonDOkey","public_key":keysDO[1],"private_key":keysDO[0]}}
  # Create the orchestration workflow
  workflow=Workflow("DataFlow-Demo-Cloud",config)

  # The task a: a EC2 Instance
  taskA= CloudTask("A", "mkdir output;echo I am A > output/f1.txt", Provider.EC2,"ubuntu",create_instance=False,id="i-021d09715bc0b877c", keyparams=keysshparams3,endpoint="6c24aea0-e208-11e8-8c92-0a1d4c5c824a",flavour=defaultflavour, instance_name="dagon")

  # The task B: another EC2 instance
  taskB= CloudTask("B", "echo I am B > f2.txt; cat workflow://A/output/f1.txt >> f2.txt", Provider.EC2,"ubuntu",create_instance=False,id="i-03d1c4f2b326ed016", keyparams=keysshparams3,flavour=defaultflavour, instance_name="B")

  # The task C: a Docker local container 
  taskC=DockerTask("C","mkdir output;ls > output/f4.txt;echo I am C > f3.txt; cat workflow://A/output/f1.txt >> f3.txt", image="ubuntu:18.04")

  # Task D: another EC2 instance
  taskD= CloudTask("D", "echo I am D > f1.txt", Provider.EC2,"ubuntu",create_instance=False,id="i-021d09715bc0b877c", keyparams=keysshparams3,endpoint="6c24aea0-e208-11e8-8c92-0a1d4c5c824a",flavour=defaultflavour, instance_name="dagon")

  #Task E: Another EC2 instance
  taskE= CloudTask("E", "echo I am E > f4.txt; cat workflow://D/f1.txt >> f4.txt; cat workflow://C/f3.txt >> f4.txt", Provider.EC2,"ubuntu",create_instance=False,id="i-021d09715bc0b877c", keyparams=keysshparams3,endpoint="6c24aea0-e208-11e8-8c92-0a1d4c5c824a",flavour=defaultflavour, instance_name="dagon")
if __name__ == '__main__':

    #command_dir = "/home/robot/Escritorio/Projects/Crawlers/Merra_Master/"
    command_dir = sys.argv[1]
    init_date = sys.argv[2]
    end_date = sys.argv[3]
    id_test = str(sys.argv[4]) #also iterations
    # Create the orchestration workflow
    if not os.path.exists("../logs/"):
        os.makedirs("../logs/")

    logfile= open("../logs/LOG_single_test_No-<"+id_test+".txt", "a+")
    logfile.write("building,validation,runtime\n")

    for i in range(0,int(id_test)):
        workflow = Workflow("Merra-Docker")

        # The task a
        start_building = time.time()
        taskA = DagonTask(TaskType.BATCH, "Adquisition", "cp -r "+command_dir+"/launcher/lib $PWD;\
            java -jar "+command_dir+"launcher/launcher.jar 1 1 "+init_date+" "+end_date+" $PWD/ aq_"+id_test)
        # The task b
        taskB = DockerTask("Interpolation", "python /home/Interpolacion.py -i workflow:///Adquisition/metadata/FilesNc -w 1 ", image="module_interpolation:v1")
        
        taskC = DockerTask("Uploader", "python /home/upload.py -i workflow:///Interpolation/output -w 1 ", image="module_todb:v1")

        # add tasks to the workflow
        workflow.add_task(taskA)
        workflow.add_task(taskB)
        workflow.add_task(taskC)
import sys
import json
import os.path
import datetime

from dagon import batch
from dagon import Workflow
from dagon.docker_task import DockerTask

# Check if this is the main
if __name__ == '__main__':

    config = {"scratch_dir_base": "/tmp/test/", "remove_dir": False}

    # Create the orchestration workflow
    workflow = Workflow("DataFlow-Demo-Docker", config)

    # The task a
    taskA = DockerTask("A", "echo I am A > f1.txt", image="ubuntu:18.04")
    #taskA=DockerTask("Tokio","echo Soy Tokio > f1.txt", "ubuntu")

    # The task b
    taskB = DockerTask(
        "Berlin",
        "echo Soy Berlin > f2.txt; cat workflow://Tokio/f1.txt >> f2.txt",
        "ubuntu")

    # The task c
    taskC = DockerTask(
        "Nairobi",
        "echo Soy Nairobi > f2.txt; cat workflow://Tokio/f1.txt >> f2.txt",
Beispiel #20
0
from dagon import Workflow
from dagon.task import TaskType, DagonTask
import json

if __name__ == '__main__':

    # Create the orchestration workflow
    workflow = Workflow("Taskflow-Demo")

    taskA = DagonTask(TaskType.BATCH, "Tokio", "/bin/hostname >tokio.out")
    taskB = DagonTask(TaskType.BATCH, "Berlin", "/bin/date")
    taskC = DagonTask(TaskType.BATCH, "Nairobi", "/usr/bin/uptime")
    taskD = DagonTask(TaskType.BATCH, "Mosco",
                      "cat workflow:///Tokio/tokio.out")

    workflow.add_task(taskA)
    workflow.add_task(taskB)
    workflow.add_task(taskC)
    workflow.add_task(taskD)

    taskB.add_dependency_to(taskA)
    taskC.add_dependency_to(taskA)
    taskD.add_dependency_to(taskB)
    taskD.add_dependency_to(taskC)

    jsonWorkflow = workflow.as_json()
    with open('taskflow-demo.json', 'w') as outfile:
        stringWorkflow = json.dumps(jsonWorkflow, sort_keys=True, indent=2)
        outfile.write(stringWorkflow)

    workflow.run()