Beispiel #1
0
    def debug_image(block_size, frame_base, list_predictive, list_residuals, output_location):
        """
        Note:
            I haven't made an effort to maintain this method, as it's only for debugging.

        This section can best be explained through pictures. A visual way of expressing what 'debug'
        is doing is this section in the wiki.

        https://github.com/aka-katto/dandere2x/wiki/How-Dandere2x-Works#part-1-identifying-what-needs-to-be-drawn

        In other words, this method shows where residuals are, and is useful for finding good settings to use for a video.

        Inputs:
            - frame(x)
            - Residual vectors mapping frame(x)_residual -> frame(x)

        Output:
            - frame(x) minus frame(x)_residuals = debug_image
        """
        logger = logging.getLogger(__name__)

        difference_vectors = []
        predictive_vectors = []
        out_image = Frame()
        out_image.create_new(frame_base.width, frame_base.height)
        out_image.copy_image(frame_base)

        black_image = Frame()
        black_image.create_new(frame_base.width, frame_base.height)

        if not list_predictive and not list_residuals:
            out_image.save_image(output_location)
            return

        if list_predictive and not list_residuals:
            out_image.copy_image(frame_base)
            out_image.save_image(output_location)
            return

        # load list into vector displacements
        for x in range(int(len(list_residuals) / 4)):
            difference_vectors.append(DisplacementVector(int(list_residuals[x * 4]),
                                                         int(list_residuals[x * 4 + 1]),
                                                         int(list_residuals[x * 4 + 2]),
                                                         int(list_residuals[x * 4 + 3])))
        for x in range(int(len(list_predictive) / 4)):
            if (int(list_predictive[x * 4 + 0]) != int(list_predictive[x * 4 + 1])) and \
                    (int(list_predictive[x * 4 + 2]) != int(list_predictive[x * 4 + 3])):
                predictive_vectors.append(DisplacementVector(int(list_predictive[x * 4 + 0]),
                                                             int(list_predictive[x * 4 + 1]),
                                                             int(list_predictive[x * 4 + 2]),
                                                             int(list_predictive[x * 4 + 3])))

        # copy over predictive vectors into new image
        for vector in difference_vectors:
            out_image.copy_block(black_image, block_size,
                                 vector.x_1, vector.y_1,
                                 vector.x_1, vector.y_1)

        out_image.save_image(output_location)
Beispiel #2
0
    def make_merge_image(context: Dandere2xServiceContext,
                         frame_residual: Frame, frame_previous: Frame,
                         list_predictive: list, list_residual: list,
                         list_corrections: list, list_fade: list):
        """
        This section can best be explained through pictures. A visual way of expressing what 'merging'
        is doing is this section in the wiki.

        https://github.com/aka-katto/dandere2x/wiki/How-Dandere2x-Works#part-2-using-observations-to-save-time

        Inputs:
            - frame(x)
            - frame(x+1)_residual
            - Residual vectors mapping frame(x+1)_residual -> frame(x+1)
            - Predictive vectors mapping frame(x) -> frame(x+1)

        Output:
            - frame(x+1)
        """
        out_image = Frame()
        out_image.create_new(frame_previous.width, frame_previous.height)

        # If list_predictive is empty, then the residual frame is simply the newly produced image.
        if not list_predictive:
            out_image.copy_image(frame_residual)
            return out_image
        """
        By copying the image first as the first step, all the predictive elements of the form (x,y) -> (x,y)
        are also copied. This allows us to ignore copying vectors (x,y) -> (x,y), which prevents redundant copying,
        thus saving valuable computational time.
        """
        out_image.copy_image(frame_previous)

        ###################
        # Plugins Section #
        ###################

        # Note: Run the residual_plugins in the SAME order it was ran in dandere2x_cpp. If not, it won't work correctly.
        out_image = pframe_image(context, out_image, frame_previous,
                                 frame_residual, list_residual,
                                 list_predictive)
        # out_image = fade_image(context, out_image, list_fade)
        # out_image = correct_image(context, out_image, list_corrections)

        return out_image
Beispiel #3
0
    def make_residual_image(context: Dandere2xServiceContext, raw_frame: Frame, list_residual: list,
                            list_predictive: list):
        """
        This section can best be explained through pictures. A visual way of expressing what 'make_residual_image'
        is doing is this section in the wiki.

        https://github.com/aka-katto/dandere2x/wiki/How-Dandere2x-Works#observation_3

        Inputs:
            - frame(x)
            - Residual vectors mapping frame(x)_residual -> frame(x)

        Output:
            - frame(x)_residual
        """

        # Some conditions to check before making a residual image, in both cases, we don't need to do any actual
        # processing in the function call, if these conditions hold true.
        if not list_residual and list_predictive:
            """
            If there are no items in 'list_residuals' but have list_predictives then the two frames are identical,
            so no residual image needed.
            """
            residual_image = Frame()
            residual_image.create_new(1, 1)
            return residual_image

        if not list_residual and not list_predictive:
            """ 
            If there are neither any predictive or inversions, then the frame is a brand new frame with no resemblence
            to previous frame. In this case, copy the entire frame over.
            """
            residual_image = Frame()
            residual_image.create_new(raw_frame.width, raw_frame.height)
            residual_image.copy_image(raw_frame)
            return residual_image

        buffer = 5
        block_size = context.service_request.block_size
        bleed = context.bleed
        """
        First make a 'bleeded' version of input_frame, as we need to create a buffer in the event the 'bleed'
        ends up going out of bounds. In other words, crop the image into an even larger image, so that if if we need
        to access out of bounds pixels, and place black pixels where it would be out of bounds. 
        """
        bleed_frame = raw_frame.create_bleeded_image(buffer)

        # size of output image is determined based off how many residuals there are
        image_size = int(math.sqrt(len(list_residual) / 4) + 1) * (block_size + bleed * 2)
        residual_image = Frame()
        residual_image.create_new(image_size, image_size)

        for x in range(int(len(list_residual) / 4)):
            # load every element in the list into a vector
            vector = DisplacementVector(int(list_residual[x * 4 + 0]),
                                        int(list_residual[x * 4 + 1]),
                                        int(list_residual[x * 4 + 2]),
                                        int(list_residual[x * 4 + 3]))

            # apply that vector to the image by copying over their respective blocks.
            residual_image.copy_block(bleed_frame, block_size + bleed * 2,
                                      vector.x_1 + buffer - bleed, vector.y_1 + buffer + - bleed,
                                      vector.x_2 * (block_size + bleed * 2), vector.y_2 * (block_size + bleed * 2))

        return residual_image