def benchmark_flair_mdl():
    tagger = load_flair_pos_model()
    
    start = time.time()
    tagger.predict(corpus_flair.test)
    tags_pred = [[tok.tags['upos'].value for tok in fs] for fs in corpus_flair.test]
    
    print('**Flair model** ')
    print_speed_performance(start, num_sentences, num_tokens)
    
    assert len(tags_pred)==num_sentences
    assert sum([len(s) for s in tags_pred])==num_tokens
    
    print(accuracy_report(tags_true, tags_pred), end="\n\n")
Beispiel #2
0
def benchmark_flair_mdl():
    tagger = load_flair_pos_model()

    start = time.time()
    tagger.predict(corpus_flair.test)
    tags_pred = [[tok.tags['upos'].value for tok in fs]
                 for fs in corpus_flair.test]

    print('**Flair model** ')
    print("Made predictions on {} sentences and {} tokens in {}s".format(
        num_sentences, num_tokens,
        time.time() - start))

    assert len(tags_pred) == num_sentences
    assert sum([len(s) for s in tags_pred]) == num_tokens

    print(classification_report(tags_true, tags_pred, digits=4))
Beispiel #3
0
    def test_flair_tagger(self):
        # Download model beforehand
        download_model('flair.pos',
                       DEFAULT_CACHE_DIR,
                       process_func=_unzip_process_func,
                       verbose=True)
        print("Downloaded the flair model")

        # Load the POS tagger using the DaNLP wrapper
        flair_model = load_flair_pos_model()

        # Using the flair POS tagger
        sentence = Sentence(
            'jeg hopper på en bil som er rød sammen med Jens-Peter E. Hansen')
        flair_model.predict(sentence)

        expected_string = "jeg <PRON> hopper <VERB> på <ADP> en <DET> bil <NOUN> som <ADP> er " \
                          "<AUX> rød <ADJ> sammen <ADV> med <ADP> Jens-Peter <PROPN> E. <PROPN> Hansen <PROPN>"

        self.assertEqual(sentence.to_tagged_string(), expected_string)