def create_pie(value, name, color='rgba(59, 64, 72, 100)', **card_props): # TODO: Read in bgcolor from theme fig = { 'data': [{ 'values': value, 'textinfo': 'none', 'hoverinfo': 'value+percent', 'type': 'pie', 'hole': 0.5, 'marker': { 'colors': [color, 'var(--border)'], 'line': { 'width': 20, 'color': 'var(--background)' } } }], 'layout': { 'margin': { 'l': 10, 'r': 10, 't': 10, 'b': 10 }, 'showlegend': False, 'height': 200, } } pie = ddk.Graph(id='id' + name, figure=fig, config={'displayModeBar': False}) return ddk.Card(pie, **card_props)
from dash.dependencies import Input, Output app = dash.Dash(__name__) server = app.server # expose server variable for Procfile app.layout = ddk.App([ ddk.Header([ ddk.Logo(src=app.get_asset_url('logo.png')), ddk.Title('Dash Enterprise Sample Application'), ]), ddk.Row(children=[ ddk.Card(children=ddk.Graph(figure={ 'data': [{ 'x': [1, 2, 3, 4], 'y': [4, 1, 6, 9], 'line': { 'shape': 'spline' } }] }, )), ]), ddk.Row(children=[ ddk.Card(width=50, children=ddk.Graph(figure={ 'data': [{ 'x': [1, 2, 3, 4], 'y': [4, 1, 6, 9], 'line': { 'shape': 'spline' } }]
'max-height': 100, 'width': 'auto' }), ddk.Title('TELONAS2'), ddk.SectionTitle('', id='final_date'), html.Button('Refresh', style={'float': 'right'}, id='refresh', n_clicks=0), ]), ddk.Block( children=[ dcc.Tabs(id='selected-tab', value='load', children=[ dcc.Tab(label="Load", value='load', children=[ddk.Card(width=100, children=[ dcc.Loading(id='load_loader', children=[ ddk.Graph(id="load_plot", config=graph_config)]), ] ) ] ) ] ), dcc.Tab(label="Profiles", value='profiles', children=[ddk.Card(width=100, children=[ dcc.Loading(id='profile_loader', children=[ ddk.Graph(id="profile_plot", config=graph_config)]) ] ) ] )
), ] ), # end of app-description Card and it's children ]), # end of About tab and it's children ]), # end of dcc.Tabs() and it's children ] # end of left-hand column - children ), # end of left-hand column ddk.Block( # right-hand column width=80, children=[ ddk.Card( # map of canada padding=0, children=[ ddk.CardHeader( title='Geographic Representation of Funding'), ddk.Graph(id='map-graph'), ]), ddk.Card( # Companies Dataframe Table children=[ ddk.CardHeader( title='Search by Company or Project Keyword'), ddk.DataTable( id='companies-table', columns=[{ "name": i, "id": i } for i in df[[ 'Company_Name', 'Project', '$_Amount' ]].columns], fill_width=False, filter_action='native',
import dash_core_components as dcc from dash.dependencies import Input, Output import plotly.graph_objs as go import requests from datetime import datetime as dt r = requests.get("https://financialmodelingprep.com/api/v3/quote/BTCUSD") time = [] price = [] app = dash.Dash() server = app.server app.layout = ddk.App(children=[ ddk.Card(ddk.Graph(id="graph")), dcc.Interval(id="liveupdate", interval=10000, n_intervals=0), ]) @app.callback(Output("graph", "figure"), [Input("liveupdate", "n_intervals")]) def gaph_update(n): price.append( requests.get("https://financialmodelingprep.com/api/v3/quote/BTCUSD"). json()[0]["price"]) time.append( dt.utcfromtimestamp( int( requests.get( "https://financialmodelingprep.com/api/v3/quote/BTCUSD").
# children=[ # dcc.Graph(figure=px.scatter_geo(df2, lat='Latitude', lon='Longitude', color="Period", size='LatLongPeriodCount', # hover_name="Country").update_geos(projection_type="orthographic")), # ], # ), ddk.Card( width=43, children=[ ddk.CardHeader(title='Which Country Fossils Were Found'), dcc.Graph(id='display-map', figure={}), ],), ddk.Card( width=56, children=[ ddk.CardHeader(title='Total Found by Country'), ddk.Graph(id='display-scatter', figure={}), ], ), # px.scatter(df, x="MillionsYears", y=len(df.axes[0]), color="Period"), ], ), ] ), @app.callback( Output('display-type', 'options'), [Input('period', 'value')], ) def set_type_options(chosen_type):
ddk.Block(children=[ ddk.DataCard(id="dc1", width=25, label="Dividend Yield", value="-"), ddk.DataCard(id="dc2", width=25, label="Peg Ratio", value="-"), ddk.DataCard(id="dc3", width=25, label="Beta", value="%"), ddk.DataCard(id="dc4", width=25, label="Country", value="-"), ]), ddk.Block(children=[ ddk.Card(rounded=True, children=[ ddk.Graph( id="graph", figure={ "data": [ go.Scatter(x=iex.get_prices( "AAPL", "2015-01-01", "2016-01-01").index, y=iex.get_prices( "AAPL", "2015-01-01", "2016-01-01")["Adj Close"]) ], "layout": go.Layout(xaxis={'showgrid': False}, yaxis={'showgrid': False}) }) ]) ]) ]) @app.callback([ Output("graph", "figure"), Output("dc4", "value"), Output("dc3", "value"),
var_list.append({'label': var, 'value': var}) vars[set] = var_list external_stylesheets = ['https://codepen.io./chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__) app.layout = html.Div([ #Baro html.Div([ html.Label(['Barometric Pressure']), ddk.Card(width=100, children=[ddk.Graph(id='baro-graphic', figure = px.scatter(data['baro'], y=data['baro']['BaroPres'], x=data['baro']['time'] ) )], ) ]), html.Div([ #html.H3('Column 1'), html.Label(['Scientific Data']), dcc.Dropdown( id="select_sci", options=vars['sci'], value=vars['sci'][0]['value'] #multi=True ), ddk.Card(width=100, children=[ddk.Graph(id='sci-graphic')],
]) ]), ddk.ControlCard( width=25, children=[ ddk.ControlItem(children=[ dcc.Dropdown(id="dd2", options=time, value="15min") ]) ]), ddk.ControlCard( width=25, children=[ ddk.ControlItem( children=[dcc.Input(id="Input_Value", value=5)]) ]), ddk.Card(children=[ddk.Graph(id="graph")]) ]) @app.callback(Output("graph", "figure"), [ Input("dd1", "value"), Input("dd2", "value"), Input("Input_Value", "value") ]) def update_graph(dd1, dd2, Input_Value): r = requests.get( "https://financialmodelingprep.com/api/v3/historical-chart/%s/%s" % (dd2, dd1)) df = pd.DataFrame.from_dict(r.json()) df["date"] = pd.to_datetime(df["date"]) df["SMA"] = df["close"].rolling(int(Input_Value)).mean()
children=[ddk.ControlItem(children=[dcc.Dropdown(id="dropdown", options=iex.companies, value="AAPL"), ddk.ControlItem(width=50,children=[dcc.DatePickerRange(id="datepicker",start_date="2015-01-01",end_date="2016-01-01",display_format="YYYY-MM-DD")])])], )), ddk.Block(children=[ddk.DataCard(id="dc1", width=25, label="Dividend Yield", value="-"), ddk.DataCard(id="dc2", width=25, label="Peg Ratio", value="-"), ddk.DataCard(id="dc3", width=25, label="Beta", value="%"), ddk.DataCard(id="dc4", width=25, label="Country", value="-"), ]), ddk.Block(children=[ddk.Card(rounded=True, children=[ddk.Graph(id="graph", figure={ "data": [go.Scatter(x=iex.get_prices("AAPL","2015-01-01","2016-01-01").index, y=iex.get_prices("AAPL","2015-01-01","2016-01-01")["Adj Close"])], "layout": go.Layout(xaxis={ 'showgrid': False }, yaxis={ 'showgrid': False }) } )])]) ]) @app.callback([Output("graph", "figure"),Output("dc4", "value"), Output("dc3", "value"), Output("dc2", "value"), Output("dc1", "value")], [Input("dropdown", "value"),Input("datepicker","start_date"),Input("datepicker","end_date")]) def update_card1(value,start_date,end_date): profile = iex.get_company(value)
def Graphs(): df_streamtube = ddk.datasets.df_streamtube() df_choropleth = ddk.datasets.df_choropleth() df_scattergeo = ddk.datasets.df_scattergeo() df_iris = ddk.datasets.df_iris() x = [1, 2, 3] labels = ['Montreal', 'Tofu Bowl', 'Tropical Beaches'] labels_long = [ 'Montreal', 'New York City', 'Tokyo', 'Cincinatti', 'Miami', 'London', 'Vancouver' ] values_long = [1, 2, 3, 1, 5, 6, 7] y1 = [3, 1, 2] y2 = [4, 10, 4] y3 = [5, 2, 3] y4 = [9, 3, 8] y5 = [10, 5, 12] y6 = [11, 8, 10] y7 = [1, 2, 1] y8 = [5, 3, 1] z = [5, 3, 1] matrix = [ [1, 2, 3], [4, 1, 2], [1, 3, 4] ] open = [33.0, 33.3, 33.5, 33.0, 34.1] high = [33.1, 33.3, 33.6, 33.2, 34.8] low = [32.7, 32.7, 32.8, 32.6, 32.8] close = [33.0, 32.9, 33.3, 33.1, 33.1] dates = [dt(year=2013, month=10, day=10), dt(year=2013, month=11, day=10), dt(year=2013, month=12, day=10), dt(year=2014, month=1, day=10), dt(year=2014, month=2, day=10)] r = [0.5, 1, 2, 2.5, 3, 4] theta = [35, 70, 120, 155, 205, 240] datas = [ [ {'type': 'scatter', 'x': x, 'y': y1, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y2, 'mode': 'lines'}, ], [ {'type': 'scatter', 'x': x, 'y': y1, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y2, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y3, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y4, 'mode': 'lines'}, ], [ {'type': 'scatter', 'x': x, 'y': y1, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y2, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y3, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y4, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y5, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y6, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y7, 'mode': 'lines'}, {'type': 'scatter', 'x': x, 'y': y8, 'mode': 'lines'}, ], [ {'type': 'scatter', 'x': x, 'y': y1, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y2, 'mode': 'markers'}, ], [ {'type': 'scatter', 'x': x, 'y': y1, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y2, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y3, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y4, 'mode': 'markers'}, ], [ {'type': 'scatter', 'x': x, 'y': y1, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y2, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y3, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y4, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y5, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y6, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y7, 'mode': 'markers'}, {'type': 'scatter', 'x': x, 'y': y8, 'mode': 'markers'}, ], [ { 'type': 'scatter', 'x': x, 'y': y1, 'marker': {'color': y2}, 'mode': 'markers' }, ], [ {'type': 'scatter', 'x': x, 'y': y1, 'mode': 'lines+markers'}, {'type': 'scatter', 'x': x, 'y': y2, 'mode': 'lines+markers'}, ], [ {'type': 'bar', 'x': labels, 'y': y1}, {'type': 'bar', 'x': labels, 'y': y2}, ], [ {'type': 'bar', 'x': labels, 'y': y1}, {'type': 'bar', 'x': labels, 'y': y2}, {'type': 'bar', 'x': labels, 'y': y3}, {'type': 'bar', 'x': labels, 'y': y4}, ], [ {'type': 'bar', 'x': labels, 'y': y1}, {'type': 'bar', 'x': labels, 'y': y2}, {'type': 'bar', 'x': labels, 'y': y3}, {'type': 'bar', 'x': labels, 'y': y4}, {'type': 'bar', 'x': labels, 'y': y5}, {'type': 'bar', 'x': labels, 'y': y6}, {'type': 'bar', 'x': labels, 'y': y7}, {'type': 'bar', 'x': labels, 'y': y8}, ], [ {'type': 'scatter', 'x': x, 'y': y1, 'mode': 'lines', 'fill': 'tonexty'}, {'type': 'scatter', 'x': x, 'y': y2, 'mode': 'lines', 'fill': 'tonexty'}, ], [ {'type': 'heatmap', 'z': matrix} ], [ {'type': 'contour', 'z': matrix} ], [ {'type': 'histogram2d', 'x': x, 'y': y1} ], [ {'type': 'histogram2dcontour', 'x': x, 'y': y1} ], [ {'type': 'pie', 'labels': labels, 'values': y1} ], [ {'type': 'pie', 'labels': labels_long, 'values': values_long} ], [ {'type': 'box', 'y': y1}, {'type': 'box', 'y': y2} ], [ {'type': 'box', 'y': y1, 'boxpoints': 'all'}, {'type': 'box', 'y': y2, 'boxpoints': 'all'} ], [ {'type': 'violin', 'y': y1}, {'type': 'violin', 'y': y2} ], [ {'type': 'violin', 'y': y1, 'points': 'all'}, {'type': 'violin', 'y': y2, 'points': 'all'} ], [ {'type': 'histogram', 'y': y1} ], [ {'type': 'scatter3d', 'x': x, 'y': y1, 'z': z, 'mode': 'markers'}, {'type': 'scatter3d', 'x': x, 'y': y2, 'z': z, 'mode': 'markers'} ], [ {'type': 'scatter3d', 'x': x, 'y': y1, 'z': z, 'mode': 'lines'}, {'type': 'scatter3d', 'x': x, 'y': y2, 'z': z, 'mode': 'lines'} ], [ {'type': 'scatter3d', 'x': x, 'y': y1, 'z': z, 'mode': 'markers+lines'}, {'type': 'scatter3d', 'x': x, 'y': y2, 'z': z, 'mode': 'markers+lines'} ], [ {'type': 'surface', 'z': matrix} ], [ { 'type': 'cone', 'x': [row[0] for row in cone_data], 'y': [row[1] for row in cone_data], 'z': [row[2] for row in cone_data], 'u': [row[3] for row in cone_data], 'v': [row[4] for row in cone_data], 'w': [row[5] for row in cone_data], } ], [ { 'type': 'streamtube', 'x': df_streamtube['x'], 'y': df_streamtube['y'], 'z': df_streamtube['z'], 'u': df_streamtube['u'], 'v': df_streamtube['v'], 'w': df_streamtube['w'], 'sizeref': 0.5 } ], [ { 'type': 'choropleth', 'z': df_choropleth['GDP (BILLIONS)'], 'locations': df_choropleth['CODE'], 'text': df_choropleth['COUNTRY'] } ], [ { 'type': 'scattergeo', 'lon': df_scattergeo['long'], 'lat': df_scattergeo['lat'], 'mode': 'markers', } ], [ { 'type': 'scattermapbox', 'lon': df_scattergeo['long'], 'lat': df_scattergeo['lat'], 'mode': 'markers', } ], [ { 'type': 'candlestick', 'open': open, 'high': high, 'low': low, 'close': close } ], [ { 'type': 'ohlc', 'open': open, 'high': high, 'low': low, 'close': close } ], [ {'type': 'scatterternary', 'a': x, 'b': y1, 'c': y2, 'mode': 'markers'}, ], [ {'type': 'scatterternary', 'a': x, 'b': y1, 'c': y2, 'mode': 'lines'}, ], [ {'type': 'scatterpolar', 'r': r, 'theta': theta, 'mode': 'markers'}, ], [ {'type': 'scatterpolar', 'r': r, 'theta': theta, 'mode': 'lines'}, ], [ dict( type='parcoords', dimensions=list([ dict(range=[0,8], constraintrange=[4,8], label='Sepal Length', values=df_iris['sepal_length']), dict(range=[0,8], label='Sepal Width', values=df_iris['sepal_width']), dict(range=[0,8], label='Petal Length', values=df_iris['petal_length']), dict(range=[0,8], label='Petal Width', values=df_iris['petal_width']) ]) ) ], [ dict( type='sankey', node=dict( label=["Nuclear", "Wind Energy", "Thermal", "Bio Conversion", "Airline Industry", "Losses"], ), link=dict( source=[0, 1, 0, 2, 3, 3], target=[2, 3, 3, 4, 4, 5], value=[8, 4, 2, 8, 4, 2] ) ) ], [ { 'type': 'carpet', 'a': [4, 4, 4, 4.5, 4.5, 4.5, 5, 5, 5, 6, 6, 6], 'b': [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3], 'y': [2, 3.5, 4, 3, 4.5, 5, 5.5, 6.5, 7.5, 8, 8.5, 10], } ], [ { 'type': 'contourcarpet', 'a': [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], 'b': [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6], 'z': [1, 1.96, 2.56, 3.0625, 4, 5.0625, 1, 7.5625, 9, 12.25, 15.21, 14.0625], }, { 'type': 'carpet', 'a': [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], 'b': [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6], 'x': [2, 3, 4, 5, 2.2, 3.1, 4.1, 5.1, 1.5, 2.5, 3.5, 4.5], 'y': [1, 1.4, 1.6, 1.75, 2, 2.5, 2.7, 2.75, 3, 3.5, 3.7, 3.75], } ] ] return html.Div([ ddk.Card(width=25, children=[ ddk.CardHeader(title=data[0]['type']), ddk.Graph( id='graph-{}'.format(i), figure={ 'data': data, 'layout': { 'title': 'Hello World', } } ) ]) for (i, data) in enumerate(datas) ])
import dash import dash_design_kit as ddk import plotly.express as px import pandas as pd app = dash.Dash(__name__) server = app.server # expose server variable for Procfile df = pd.DataFrame({ "Fruit": ["Apples", "Oranges", "Bananas", "Apples", "Oranges", "Bananas"], "Amount": [4, 1, 2, 2, 4, 5], "City": ["SF", "SF", "SF", "Montreal", "Montreal", "Montreal"] }) fig = px.bar(df, x="Fruit", y="Amount", color="City", barmode="group") app.layout = ddk.App( show_editor=True, children=[ ddk.Header([ddk.Title('Hello Dash')]), ddk.Card(children=[ ddk.CardHeader( title='Dash: A Web application framework for Python.'), ddk.Graph(figure=fig) ]) ])