def _save_to_dat_callback(
            self, graph_id,
            datnum_id):  # FIXME: This is dat specific... should not be in here
        def save_to_dat(clicks, fig, datnum, save_name):
            if clicks and datnum and fig:
                dat = get_dat(datnum)
                fig = go.Figure(fig)
                if not save_name:
                    save_name = fig.layout.title.text
                    if not save_name:
                        save_name = dat.Figures._generate_fig_name(
                            fig, overwrite=False)
                dat.Figures.save_fig(fig,
                                     save_name,
                                     sub_group_name='Dash',
                                     overwrite=True)
                return True
            else:
                raise PreventUpdate

        app.callback(Output(f'{graph_id}_div-fake-output', 'hidden'),
                     Input(f'{graph_id}_but-dat-save', 'n_clicks'),
                     State(graph_id, 'figure'), State(datnum_id, 'value'),
                     State(f'{graph_id}_inp-download-name',
                           'value'))(save_to_dat)
    def _save_to_shared_callback(self, graph_id):
        def save_to_file(clicks, fig, save_name):
            if clicks and fig:
                if not save_name:
                    save_name = dictor(fig, 'layout.title.text',
                                       NameResetter().get_resetting_fig_name())
                SharedFigs().add_fig(save_name, fig)
                return True
            else:
                raise PreventUpdate

        app.callback(Output(f'{graph_id}_div-fake-output2', 'hidden'),
                     Input(f'{graph_id}_but-shared-save', 'n_clicks'),
                     State(graph_id, 'figure'),
                     State(f'{graph_id}_inp-download-name',
                           'value'))(save_to_file)
Beispiel #3
0
    def _download_callback(self, graph_id, file_type: str):
        """https://pypi.org/project/dash-extensions/"""
        def make_file(n_clicks, fig: dict, filename: str):
            if n_clicks:
                fig = go.Figure(fig)
                if not filename:
                    filename = fig.layout.title.text
                    if not filename:
                        filename = 'DashFigure'

                fname = filename + f'.{file_type}'
                bytes_ = False
                if file_type == 'html':
                    data = fig.to_html()
                    mtype = 'text/html'
                elif file_type == 'jpg':
                    fig.write_image('temp/dash_temp.jpg', format='jpg')
                    return send_file('temp/dash_temp.jpg',
                                     filename=fname,
                                     mime_type='image/jpg')
                elif file_type == 'svg':
                    fig.write_image('temp/dash_temp.svg', format='svg')
                    return send_file('temp/dash_temp.svg', fname,
                                     'image/svg+xml')
                else:
                    raise ValueError(f'{file_type} not supported')

                return dict(content=data,
                            filename=fname,
                            mimetype=mtype,
                            byte=bytes_)
            else:
                raise PreventUpdate

        if file_type not in ['html', 'jpg', 'svg']:
            raise ValueError(f'{file_type} not supported')

        dl_id = f'{graph_id}_download-{file_type}'
        but_id = f'{graph_id}_but-{file_type}-download'
        name_id = f'{graph_id}_inp-download-name'
        app.callback(Output(dl_id, 'data'), Input(but_id, 'n_clicks'),
                     State(graph_id, 'figure'), State(name_id,
                                                      'value'))(make_file)
Beispiel #4
0
    def make_callback(self,
                      inputs: Union[List[CALLBACK_TYPE], CALLBACK_TYPE] = None,
                      outputs: Union[List[CALLBACK_TYPE],
                                     CALLBACK_TYPE] = None,
                      func: Callable = None,
                      states: Union[List[CALLBACK_TYPE], CALLBACK_TYPE] = None,
                      triggers: Union[List[CALLBACK_TYPE],
                                      CALLBACK_TYPE] = None):
        """
        Helper function for attaching callbacks more easily

        Args:
            inputs (List[CALLBACK_TYPE]): The tuples that would go into dash.dependencies.Input() (i.e. (<id>, <property>)
            outputs (List[CALLBACK_TYPE]): Similar, (<id>, <property>)
            states (List[CALLBACK_TYPE]): Similar, (<id>, <property>)
            func (Callable): The function to wrap with the callback (make sure it takes the right number of inputs in order and returns the right number of outputs in order)
            triggers (): Triggers callback but is not passed to function

        Returns:

        """
        def ensure_list(val) -> List[CALLBACK_TYPE]:
            if isinstance(val, tuple):
                return [val]
            elif val is None:
                return []
            elif isinstance(val, list):
                return val
            else:
                raise TypeError(f'{val} is not valid')

        if inputs is None and triggers is None:
            raise ValueError(
                f"Can't have both inputs and triggers set as None... "
                f"\n{inputs, triggers, outputs, states}")

        inputs, outputs, states, triggers = [
            ensure_list(v) for v in [inputs, outputs, states, triggers]
        ]

        Inputs = [Input(*inp) for inp in inputs]
        Outputs = [Output(*out) for out in outputs]
        States = [State(*s) for s in states]
        app.callback(*Outputs, *Inputs, *States)(func)  # Makes callback here
def add_dash(app):

    @du.callback(
        output=Output(f'{APP_ID}_large_upload_fn_store', 'data'),
        id=f'{APP_ID}_large_upload',
    )
    def get_a_list(filenames):
        return {i: filenames[i] for i in range(len(filenames))}


    @app.callback(
        [
            Output(f'{APP_ID}_process_video_button', 'disabled'),
            Output(f'{APP_ID}_t_start_input', 'value'),
            Output(f'{APP_ID}_t_end_input', 'value'),
            Output(f'{APP_ID}_vid_w_input', 'value')
        ],
        [
            Input(f'{APP_ID}_large_upload_fn_store', 'data'),
        ],
    )
    def upload_video(dic_of_names):
        if dic_of_names is None:
            return True, 0., None, None

        clip_1 = mpy.VideoFileClip(dic_of_names[list(dic_of_names)[0]])

        return False, 0., clip_1.duration, clip_1.size[0]


    @app.callback(
        Output(f'{APP_ID}_image_div', 'children'),
        [
            Input(f'{APP_ID}_font_select', 'value'),
            Input(f'{APP_ID}_vid_w_input', 'value'),
            Input(f'{APP_ID}_large_upload_fn_store', 'data'),
            Input(f'{APP_ID}_text_input', 'value'),
            Input(f'{APP_ID}_t_start_input', 'value'),
            Input(f'{APP_ID}_t_end_input', 'value'),
            Input(f'{APP_ID}_crop_bot_input', 'value'),
            Input(f'{APP_ID}_crop_top_input', 'value'),
        ],
    )
    def frame_out(font, video_width, dic_of_names, text, clip_1_start, clip_1_end, crop_bot, crop_top):
        if any([v is None for v in [font, video_width, dic_of_names, text, crop_bot, crop_top]]):
            raise PreventUpdate

        clip_1 = mpy.VideoFileClip(dic_of_names[list(dic_of_names)[0]])
        clip_1 = clip_1.fx(mpy.vfx.resize, width=video_width)
        clip_1 = clip_1.subclip(t_start=clip_1_start, t_end=clip_1_end)
        clip_1 = clip_1.fx(mpy.vfx.crop, y1=crop_top, y2=clip_1.size[1]-crop_bot)
        txt_clip = mpy.TextClip(text,
                           size=clip_1.size,
                           color='white',
                           bg_color='black',
                           font=font
                           ).set_duration(clip_1.duration)
        # for image export in memory using PIL (for base64 convert), need to apply mask manually
        f = clip_1.fx(mpy.vfx.resize, width=540).get_frame(t=0)
        mask = 255 * txt_clip.fx(mpy.vfx.resize, width=540).to_mask().get_frame(t=0)
        ff = np.dstack([f, mask]).astype('uint8')

        im = Image.fromarray(ff)
        rawBytes = io.BytesIO()
        im.save(rawBytes, "PNG")
        rawBytes.seek(0)

        return html.Img(src=f"data:image/PNG;base64, {b64encode(rawBytes.read()).decode('utf-8')}")



    @app.callback(
        [
            Output(f'{APP_ID}_video_div', 'children'),
            Output(f'{APP_ID}_download_link', 'href'),
            Output(f'{APP_ID}_download_button', 'disabled'),
         ],
        [
            Input(f'{APP_ID}_process_video_button', 'n_clicks'),
        ],
        [
            State(f'{APP_ID}_large_upload_fn_store', 'data'),
            State(f'{APP_ID}_t_start_input', 'value'),
            State(f'{APP_ID}_t_end_input', 'value'),
            State(f'{APP_ID}_vid_w_input', 'value'),
            State(f'{APP_ID}_text_input', 'value'),
            State(f'{APP_ID}_font_select', 'value'),
            State(f'{APP_ID}_crop_bot_input', 'value'),
            State(f'{APP_ID}_crop_top_input', 'value'),
        ]
    )
    def process_pre_video(n_clicks, dic_of_names, clip_1_start, clip_1_end, video_width, text, font, crop_bot, crop_top):
        if n_clicks is None:
            raise PreventUpdate

        if dic_of_names is None:
            return None

        if text is None:
            text = ''
        clip_1 = mpy.VideoFileClip(dic_of_names[list(dic_of_names)[0]])
        clip_1 = clip_1.fx(mpy.vfx.resize, width=video_width)
        clip_1 = clip_1.subclip(t_start=clip_1_start, t_end=clip_1_end)
        clip_1 = clip_1.fx(mpy.vfx.crop, y1=crop_top, y2=clip_1.size[1]-crop_bot)
        txt_clip = mpy.TextClip(text,
                           size=clip_1.size,
                           color='white',
                           bg_color='black',
                           font=font
                           ).set_duration(clip_1.duration)
        clip_1 = clip_1.set_mask(txt_clip.to_mask())

        ffname = Path("downloads") / f'{str(uuid.uuid4())}.mp4'
        Path.mkdir(ffname.parent, parents=True, exist_ok=True)
        cvc = mpy.CompositeVideoClip([clip_1], bg_color=(255, 255, 255))
        # preview video set to 540 width and 5 fps
        fn_pre = '.'.join(str(ffname).split('.')[:-1]) + 'preview_.webm'
        cvc.fx(mpy.vfx.resize, width=540).write_videofile(fn_pre, audio=False, fps=5)
        # write full deal
        cvc.write_videofile(str(ffname), audio=False, fps=clip_1.fps)

        vid = open(fn_pre, 'rb')
        base64_data = b64encode(vid.read())
        base64_string = base64_data.decode('utf-8')
        return [html.Video(src=f'data:video/webm;base64,{base64_string}', controls=True)], f'/{ffname}', False


    return app
Beispiel #6
0
def init_dashboard(server, login_reg=True):
    """Create a Plotly Dash dashboard."""

    # Meta tags for viewport responsiveness
    meta_viewport = {
        "name": "viewport",
        "content": "width=device-width, initial-scale=1, shrink-to-fit=no"
    }
    dash_app = dash.Dash(server=server,
                         url_base_pathname='/admin/dashboard/',
                         suppress_callback_exceptions=True,
                         external_stylesheets=[
                             "/static/css/styles.css",
                             "https://fonts.googleapis.com/css?family=Lato",
                         ],
                         meta_tags=[meta_viewport])

    df = create_dataframe()

    elements = build_nodes_edges_for_cytoscape(df)

    # Create Layout
    dash_app.layout = html.Div(
        children=[
            dcc.Dropdown(id='dropdown',
                         multi=True,
                         placeholder="Select user(s)"),
            html.Div(id='dd-output-container'),
            dcc.Graph(id="histogram-graph", config={'displayModeBar': False}),
            dcc.Interval(
                id='interval-component',
                interval=60 * 1000,  # in milliseconds
                n_intervals=0),
            cyto.Cytoscape(
                id='cytoscape-users-kinds',
                layout={
                    "title": "Actions Per User",
                    'name': 'cose'
                },
                style={
                    'width': '100%',
                    'height': '400px'
                },
                elements=elements,
                stylesheet=[
                    # Group selectors
                    {
                        'selector': 'node',
                        'style': {
                            'content': 'data(label)'
                        }
                    },
                    # Class selectors
                    {
                        'selector': '.blue',
                        'style': {
                            'background-color': 'blue',
                            'line-color': 'blue'
                        }
                    },
                    {
                        'selector': '.green',
                        'style': {
                            'background-color': 'green',
                            'line-color': 'green'
                        }
                    }
                ]),
            dash_table.DataTable(
                id="database-table",
                columns=[
                    {
                        "name": i,
                        "id": i
                    } for i in
                    ['id', 'created_on', 'session_id', 'user', 'kind', 'text']
                    # omit the id column
                    if i != 'id'
                ],
                style_table={'overflowX': 'auto'},
                style_cell_conditional=[
                    {
                        'if': {
                            'column_id': 'session_id'
                        },
                        'width': '20px'
                    },
                    {
                        'if': {
                            'column_id': 'kind'
                        },
                        'width': '20px'
                    },
                    {
                        'if': {
                            'column_id': 'user'
                        },
                        'width': '40px'
                    },
                ],
                style_cell={
                    'minWidth': '20px',
                    'width': '30px',
                    'maxWidth': '250px',
                    'whiteSpace': 'normal',
                },
                data=[],
                sort_action="native",
                sort_mode="multi",
                page_action="native",
                page_size=10,
                tooltip_data=[{
                    column: {
                        'value': str(value),
                        'type': 'markdown'
                    }
                    for column, value in row.items()
                } for row in (df.to_dict('records') if not df.empty else {})],
                tooltip_duration=None,
                css=[{
                    'selector':
                    '.dash-spreadsheet td div',
                    'rule':
                    '''
                    line-height: 15px;
                    max-height: 30px; min-height: 30px; height: 30px;
                    display: block;
                    overflow-y: hidden;
                '''
                }],
            ),
        ],
        id="dash-container",
    )

    #, prevent_initial_call=True
    @dash_app.callback([
        Output('histogram-graph', 'figure'),
        Output('cytoscape-users-kinds', 'elements'),
        Output('database-table', 'data')
    ], [Input('dropdown', 'value')], State('cytoscape-users-kinds',
                                           'elements'))
    def update_output(value, elements):
        #figure=get_histogram_kind_figure(df),
        df1 = create_dataframe()
        if df1.empty:
            raise PreventUpdate
        if value:
            val_lst = []
            if isinstance(value, list):
                val_lst = value
            else:
                val_lst.append(value)
            df1 = df1[df1["user"].isin(val_lst)]
            elements = build_nodes_edges_for_cytoscape(df1)

        fig = get_histogram_kind_figure(df1)

        return [fig, elements, df1.to_dict("records")]

    @dash_app.callback(Output("dropdown", "options"),
                       [Input("dropdown", "search_value")])
    def update_options(search_value):
        df = create_dataframe()
        if df.empty:
            raise PreventUpdate
            # return dash.no_update

        users_options = [{
            'label': i[0],
            'value': i[0]
        } for i in df.groupby("user")['user']]
        search_value = [users_options[0]['value'] if users_options else '']

        return users_options

    # @dash_app.callback(Output('dropdown', 'value'),[Input('dropdown', 'options')])
    # def set_users_value(available_options):
    #     if not available_options:
    #         raise PreventUpdate
    #     return available_options[0]['value'] if available_options else ''

    # @dash_app.callback(Output('database-table', 'data'), Input('interval-component', 'n_intervals'))
    # def query_df(n):
    #     return create_dataframe().to_dict("records")

    if login_reg:
        _protect_dashviews(dash_app)

    return dash_app.server
Beispiel #7
0
#     else:

#         spec = np.roll(existing_store['spec'],-1,0)
#         spec[-1] = newLine

#         existing_store['spec'] = spec
#         existing_store['freqs'] = freqs
#         existing_store['timestamp'] = timestamp

#         return existing_store


@app.callback(
    ServersideOutput("userServerStore",
                     "data"), [Trigger("check_for_data", "n_intervals")],
    [State("spec", "relayoutData"),
     State("userServerStore", "data")],
    prevent_initial_call=True)
def update_server_store(relayoutData, userServerStore):
    existing_store = userServerStore

    latest_message = numpy_from_Redis(redis_client, 'latest')
    latest_integration = np.array(latest_message[:-1], dtype=const.DTYPE)
    latest_timestamp = latest_message[-1]

    if existing_store == None:
        existing_store = {
            'spec': start_spec,
            'freqs': start_freqs,
            'timestamp': 0.0
        }

@app.callback(ServersideOutput("store", "data"), Input("btn", "n_clicks"))
def query_data(n_clicks):
    time.sleep(1)
    return px.data.gapminder()  # no JSON serialization here


@app.callback(Input("store", "data"), Output("dd", "options"))
def update_dd(df):
    return [{
        "label": column,
        "value": column
    } for column in df["year"]]  # no JSON de-serialization here


@app.callback(
    Output("graph", "figure"),
    [Input("dd", "value"), State("store", "data")])
def update_graph(value, df):
    df = df.query("year == {}".format(value))  # no JSON de-serialization here
    return px.sunburst(df,
                       path=['continent', 'country'],
                       values='pop',
                       color='lifeExp',
                       hover_data=['iso_alpha'])


if __name__ == '__main__':
    app.run_server()
def register_callbacks(app, dcc):
    @app.callback(
        Output(component_id='stringency_index_show',
               component_property='children'),
        [Input(component_id='stringency_index', component_property='value')])
    def update_stringency_index(input_value):
        return 'Stringency Index: {}'.format(input_value)

    @app.callback(Output('social-indicators-scroll', 'style'),
                  [Input('input-switch', 'value')])
    def update_output(value):
        if not value:
            return {
                'maxHeight': '250px',
                'overflow': 'scroll',
                'display': 'block'
            }
        else:
            return {
                'maxHeight': '250px',
                'overflow': 'scroll',
                'display': 'none'
            }

    @app.callback(Output('stringency-slider-container', 'style'),
                  [Input('input-switch', 'value')])
    def update_output(value):
        if value:
            return {'display': 'block'}
        else:
            return {'display': 'none'}

    @app.callback([
        Output(component_id='left_co2', component_property='children'),
        Output(component_id='right_co2', component_property='children')
    ], [Input('submit_policy_selection', 'n_clicks')], [
        State('input-switch', 'value'),
        State('stringency_index', 'value'),
        State('school-closing', 'value'),
        State('workplace-closing', 'value'),
        State('public-events', 'value'),
        State('gatherings', 'value'),
        State('public-transport', 'value'),
        State('stay-home', 'value'),
        State('internal-movement', 'value'),
        State('international-travel', 'value'),
        State('country-dropdown', 'value')
    ])
    def submit_button_controller(n_clicks, input_switcher_state,
                                 stringency_idx, school_closing_score,
                                 workspace_closing_score, public_events_score,
                                 gathering_restrictions_score,
                                 public_transport_score, stay_home_score,
                                 internal_movement_score,
                                 international_travel_score, countries):
        if n_clicks > 0:
            parse_model_input = ParseModelInputs()
            parse_model_input.countries = countries
            if input_switcher_state:  # when the toggle button is on right(stringency slider is on display)
                parse_model_input.model_type = DataAnalysingModels.STRINGENCY_INDEX_MODEL
                parse_model_input.stringency_idx = float(stringency_idx)
            else:
                parse_model_input.model_type = DataAnalysingModels.SOCIAL_POLICY_MODEL
                parse_model_input.school_closing_score = int(
                    school_closing_score)
                parse_model_input.workspace_closing_score = int(
                    workspace_closing_score)
                parse_model_input.public_events_score = int(
                    public_events_score)
                parse_model_input.gathering_restrictions_score = int(
                    gathering_restrictions_score)
                parse_model_input.public_transport_score = int(
                    public_transport_score)
                parse_model_input.stay_home_score = int(stay_home_score)
                parse_model_input.internal_movement_score = int(
                    internal_movement_score)
                parse_model_input.international_travel_score = int(
                    international_travel_score)
            out = GenerateOutput(pred_steps=142)
            df = out.get_dataframe_for_plotting(parse_model_input, countries)
            fig1 = px.line(df,
                           x='Date',
                           y='MtCO2/day',
                           color='Country',
                           title="CO<sub>2</sub> Emission per day")
            fig1.update_layout(annotations=[
                dict(yref='paper',
                     y=1,
                     xref='x',
                     x=pd.to_datetime('2020-06-11'),
                     text='Forecasting from here')
            ],
                               shapes=[
                                   dict(type='line',
                                        yref='paper',
                                        y0=0,
                                        y1=1,
                                        xref='x',
                                        x0=pd.to_datetime('2020-06-11'),
                                        x1=pd.to_datetime('2020-06-11'),
                                        line=dict(dash="dot"))
                               ],
                               transition_duration=500)

            fig2 = px.line(df,
                           x='Date',
                           y='MtCO2 reduced/day',
                           color='Country',
                           title='Reduction in CO<sub>2</sub> '
                           'emission per day')
            fig2.update_layout(annotations=[
                dict(yref='paper',
                     y=1,
                     xref='x',
                     x=pd.to_datetime('2020-06-11'),
                     text='Forecasting from here')
            ],
                               shapes=[
                                   dict(type='line',
                                        yref='paper',
                                        y0=0,
                                        y1=1,
                                        xref='x',
                                        x0=pd.to_datetime('2020-06-11'),
                                        x1=pd.to_datetime('2020-06-11'),
                                        line=dict(dash="dot"))
                               ],
                               transition_duration=500)
            return [
                dcc.Graph(id='absolute-graph', figure=fig1),
                dcc.Graph(id='reduction-graph', figure=fig2)
            ]
        else:
            return [None, None]
Beispiel #10
0
def add_dash(app):

    @du.callback(
        output=Output(f'{APP_ID}_large_upload_fn_store', 'data'),
        id=f'{APP_ID}_large_upload',
    )
    def get_a_list(filenames):
        return {i: filenames[i] for i in range(len(filenames))}


    @app.callback(
        Output(f'{APP_ID}_process_data_button', 'disabled'),
        [
            Input(f'{APP_ID}_large_upload_fn_store', 'data'),
            Input(f'{APP_ID}_dcc_upload', 'contents')
        ],
        [
            State(f'{APP_ID}_dcc_upload', 'filename')
        ]
    )
    def upload_data(dic_of_names, list_contents, list_names):
        # who done it?
        ctx = dash.callback_context
        if not ctx.triggered:
            raise PreventUpdate

        if dic_of_names is None and list_contents is None:
            return True

        lines = []
        # dcc.upload component
        if ctx.triggered[0]['prop_id'].split('.')[0] == f'{APP_ID}_dcc_upload':
            for i, fn in enumerate(list_names):
                content_type, content_string = list_contents[i].split(',')
                decoded = base64.b64decode(content_string)
                line = ''
                while line.strip() == '':
                    line = io.StringIO(decoded.decode('utf-8')).readline()
                lines.append(line)
        # dash-uploader component
        elif ctx.triggered[0]['prop_id'].split('.')[0] == f'{APP_ID}_large_upload_fn_store':
            for k in dic_of_names.keys():
                fn = dic_of_names[k]
                with open(fn) as f:
                    while True:
                        line = next(f)
                        if line.strip() != '':
                            break
                lines.append(line)

        else:
            return True

        return False


    @app.callback(
        [
            ServersideOutput(f'{APP_ID}_session_store', 'data'),
            Output(f'{APP_ID}_xaxis_select', 'options'),
            Output(f'{APP_ID}_yaxis_select', 'options'),
        ],
        [
            Input(f'{APP_ID}_process_data_button', 'n_clicks'),
        ],
        [
            State(f'{APP_ID}_large_upload_fn_store', 'data'),
            State(f'{APP_ID}_dcc_upload', 'contents'),
            State(f'{APP_ID}_dcc_upload', 'filename')
        ]
    )
    def process_data(n_clicks, dic_of_names, list_contents, list_names):
        if n_clicks is None:
            raise PreventUpdate

        if dic_of_names is None and list_contents is None:
            return [{}], None, None

        dfs = []
        if list_names is not None:
            for i, fn in enumerate(list_names):
                content_type, content_string = list_contents[i].split(',')
                decoded = base64.b64decode(content_string)
                # with open(decoded, 'rb') as f:
                lines = [l for l in io.StringIO(decoded.decode('utf-8')).readlines() if l.strip() != '']
                df = pd.read_json('[' + ','.join(lines) + ']', orient='records')
                df['fn'] = fn
                dfs.append(df)
        else:
            for k in dic_of_names.keys():
                fn = dic_of_names[k]
                with open(fn) as f:
                    lines = [l for l in f.readlines() if l.strip() != '']
                df = pd.read_json('[' + ','.join(lines) + ']', orient='records')
                df['fn'] = Path(fn).stem
                dfs.append(df)
        df = pd.concat(dfs, axis=0, ignore_index=True, sort=True)

        cols = df.columns
        cols_axes = [{'label': c, 'value': c} for c in cols]

        return df, cols_axes, cols_axes


    @app.callback(
        Output(f'{APP_ID}_graph_div', 'children'),
        [
            Input(f'{APP_ID}_xaxis_select', 'value'),
            Input(f'{APP_ID}_yaxis_select', 'value'),
        ],
        [
            State(f'{APP_ID}_session_store', 'data'),
        ]
    )
    def plot_data(xaxis, yaxis, df):
        if df is None:
            return [dbc.Alert('Upload & Process Data', color='primary')]
        if xaxis is None:
            return [dbc.Alert('Select x axis data', color='primary')]
        if yaxis is None:
            return [dbc.Alert('Select y axis data', color='primary')]

        if xaxis not in df.columns:
            return [dbc.Alert('x axis not in columns', color='danger')]
        if yaxis not in df.columns:
            return [dbc.Alert('y axis not in columns', color='danger')]

        fig = go.Figure()
        fig.update_layout(showlegend=True)
        for name, dfi in df.groupby('fn'):
            fig.add_trace(
                go.Scattergl(
                    x=dfi[xaxis].tail(200000),
                    y=dfi[yaxis].tail(200000),
                    name=name
                )
            )

        return [dcc.Graph(figure=fig, config={'modeBarButtonsToAdd':['drawline', 'drawrect', 'drawopenpath', 'eraseshape']})]

    return app
Beispiel #11
0
            # initialize staff
            result = ResultProcessing()
            result.load_models_directly(io.BytesIO(decoded))
            return result
    except Exception as e:
        print(e)
        raise ValueError('There was an error processing this file.')
        # return html.Div([
        #     'There was an error processing this file.'
        # ],
        # )


@app.callback([ServersideOutput('raw-result-store', 'data')],
              [Input('upload-result-data', 'contents')],
              [State('upload-result-data', 'filename')],
              memoize=True)
def update_file_output(contents, filename):
    # display read file status and update main visualization Div
    if contents is None:
        raise PreventUpdate
    global_result = parse_contents_result(contents[0], filename[0])
    return global_result


def parse_contents_ori(contents, filename):
    content_type, content_string = contents.split(',')
    decoded = base64.b64decode(content_string)
    try:
        if 'csv' in filename:
            df = pd.read_csv(io.StringIO(decoded.decode('utf-8')))
Beispiel #12
0
    html.Button(id="btn-run", children="Take a nap"),
    # Container for storing the result of the async job.
    html.Div(id="div-result"),
    # Container for storing a reference to the async job.
    dcc.Store(id="result-tuple"),
    # Interval component for polling updates on the status of the async job.
    dcc.Interval(id="poller", max_intervals=0),
])


@app.callback([
    Output("btn-run", "disabled"),
    Output("btn-run", "children"),
    Output("result-tuple", "data"),
    Output("poller", "max_intervals")
], [Input("btn-run", "n_clicks")], [State("nap-duration", "value")])
def launch_job(n_clicks, value):
    # Run the job asynchronously (note the .delay syntax).
    result = take_a_nap.delay(value)
    # Disable button and set text (or start a spinner, etc.), save result reference, and start polling.
    return True, "Napping...", result.as_tuple(), -1


@app.callback([
    Output("btn-run", "disabled"),
    Output("btn-run", "children"),
    Output("div-result", "children"),
    Output("poller", "max_intervals")
], [Input("poller", "n_intervals")], [State("result-tuple", "data")])
def poll_result(n_intervals, data):
    result = result_from_tuple(data, app=celery_app)