Beispiel #1
0
def jacobianDask(u, v, w, dt, dx, dy, dz):

    du = da.gradient(u, dx, dy, dz, dt, axis=(1, 2, 3))
    dv = da.gradient(v, dx, dy, dz, dt, axis=(1, 2, 3))
    dw = da.gradient(w, dx, dy, dz, dt, axis=(1, 2, 3))

    J = da.stack(
        (da.stack(du, axis=-1), da.stack(dv, axis=-1), da.stack(dw, axis=-1)),
        axis=-2)

    return J
def test_gradient(shape, varargs, axis, edge_order):
    a = np.random.randint(0, 10, shape)
    d_a = da.from_array(a, chunks=(len(shape) * (5,)))

    r = np.gradient(a, *varargs, axis=axis, edge_order=edge_order)
    r_a = da.gradient(d_a, *varargs, axis=axis, edge_order=edge_order)

    if isinstance(axis, Number):
        assert_eq(r, r_a)
    else:
        assert len(r) == len(r_a)

        for e_r, e_r_a in zip(r, r_a):
            assert_eq(e_r, e_r_a)
Beispiel #3
0
def gradient(x, coord, axis, edge_order):
    if is_duck_dask_array(x):
        return dask_array.gradient(x, coord, axis=axis, edge_order=edge_order)
    return np.gradient(x, coord, axis=axis, edge_order=edge_order)
Beispiel #4
0
def gradient(x, coord, axis, edge_order):
    if isinstance(x, dask_array_type):
        return dask_array.gradient(x, coord, axis=axis, edge_order=edge_order)
    return np.gradient(x, coord, axis=axis, edge_order=edge_order)