Beispiel #1
0
def init_train_set(epoch, from_iter):
    #train_dataset.set_curriculum_epoch(epoch, sample=True)
    train_dataset.set_curriculum_epoch(epoch, sample=False)
    global train_loader, train_sampler
    if not args.distributed:
        train_sampler = BucketingSampler(train_dataset,
                                         batch_size=args.batch_size)
        train_sampler.bins = train_sampler.bins[from_iter:]
    else:
        train_sampler = DistributedBucketingSampler(
            train_dataset,
            batch_size=args.batch_size,
            num_replicas=args.world_size,
            rank=args.rank)
    train_loader = AudioDataLoader(train_dataset,
                                   num_workers=args.num_workers,
                                   batch_sampler=train_sampler)
    if (not args.no_shuffle and epoch != 0) or args.no_sorta_grad:
        print("Shuffling batches for the following epochs")
        train_sampler.shuffle(epoch)
    else:
        train_sampler = DistributedBucketingSampler(
            train_dataset,
            batch_size=args.batch_size,
            num_replicas=args.world_size,
            rank=args.rank)
    train_loader = AudioDataLoader(train_dataset,
                                   num_workers=args.num_workers,
                                   batch_sampler=train_sampler)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad:
        print("Shuffling batches for the following epochs")
        train_sampler.shuffle(start_epoch)

    try:
        model.load_state_dict(torch.load(args.weights)['state_dict'],
                              strict=False)
        print('using weights')
    except:
        print('not using weighs')
    model = model.to(device)
    parameters = model.parameters()
    optimizer = torch.optim.SGD(parameters,
                                lr=args.lr,
                                momentum=args.momentum,
                                nesterov=True,
                                weight_decay=1e-5)
    if optim_state is not None:
    test_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                      manifest_filepath=args.val_manifest,
                                      labels=labels,
                                      normalize=True,
                                      augment=False)
    train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size)
    train_loader = AudioDataLoader(train_dataset,
                                   num_workers=args.num_workers,
                                   batch_sampler=train_sampler)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    if not args.no_shuffle and start_epoch != 0:
        print("Shuffling batches for the following epochs")
        train_sampler.shuffle()

    if args.cuda:
        model = torch.nn.DataParallel(model).cuda()

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(start_epoch, args.epochs):
        model.train()
        end = time.time()
        for i, (data) in enumerate(train_loader, start=start_iter):
Beispiel #4
0
args = parser.parse_args()

if __name__ == '__main__':
    torch.set_grad_enabled(False)
    model, _ = load_model(args.model_path)
    device = torch.device("cuda" if args.cuda else "cpu")
    label_decoder = LabelDecoder(model.labels)
    model.eval()
    model = model.to(device)

    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf, manifest_filepath=args.test_manifest,
                                      labels=model.labels)
    test_sampler = BucketingSampler(test_dataset, batch_size=args.batch_size)
    test_loader = AudioDataLoader(test_dataset, batch_sampler=test_sampler,
                                  num_workers=args.num_workers)
    test_sampler.shuffle(1)

    total_wer, total_cer, total_ler, num_words, num_chars, num_labels = 0, 0, 0, 0, 0, 0
    output_data = []

    for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader), ascii=True):
        inputs, targets, input_sizes, target_sizes, filenames = data
        inputs = inputs.to(device)
        input_sizes = input_sizes.to(device)
        outputs = model.transcribe(inputs, input_sizes)

        for i, target in enumerate(targets):
            reference = label_decoder.decode(target[:target_sizes[i]].tolist())
            transcript = label_decoder.decode(outputs[i])
            wer, trans_words, ref_words = calculate_wer(transcript, reference, '\t')
            cer, trans_chars, ref_chars = calculate_cer(transcript, reference, '\t')
def main():

    opt = TrainOptions().parse()
    device = torch.device("cuda:{}".format(opt.gpu_ids[0]) if len(opt.gpu_ids)
                          > 0 and torch.cuda.is_available() else "cpu")

    #import fake_opt
    #opt = fake_opt.Asr_train()

    visualizer = Visualizer(opt)
    logging = visualizer.get_logger()
    acc_report = visualizer.add_plot_report(['train/acc', 'val/acc'],
                                            'acc.png')
    loss_report = visualizer.add_plot_report(['train/loss', 'val/loss'],
                                             'loss.png')

    # data
    logging.info("Building dataset.")
    # train目录 和 dict目录,作为输入
    train_dataset = SequentialDataset(
        opt,
        os.path.join(opt.dataroot, 'train'),
        os.path.join(opt.dict_dir, 'train_units.txt'),
    )
    val_dataset = SequentialDataset(
        opt,
        os.path.join(opt.dataroot, 'dev'),
        os.path.join(opt.dict_dir, 'train_units.txt'),
    )

    train_sampler = BucketingSampler(train_dataset, batch_size=opt.batch_size)

    train_loader = SequentialDataLoader(train_dataset,
                                        num_workers=opt.num_workers,
                                        batch_sampler=train_sampler)
    val_loader = SequentialDataLoader(val_dataset,
                                      batch_size=int(opt.batch_size / 2),
                                      num_workers=opt.num_workers,
                                      shuffle=False)

    opt.idim = train_dataset.get_feat_size()
    opt.odim = train_dataset.get_num_classes()
    opt.char_list = train_dataset.get_char_list()
    opt.train_dataset_len = len(train_dataset)

    logging.info('#input dims : ' + str(opt.idim))
    logging.info('#output dims: ' + str(opt.odim))
    logging.info("Dataset ready!")

    # Setup a model
    asr_model = E2E(opt)
    fbank_model = FbankModel(opt)
    lr = opt.lr  # default=0.005
    eps = opt.eps  # default=1e-8
    iters = opt.iters  # default=0
    start_epoch = opt.start_epoch  # default=0
    best_loss = opt.best_loss  # default=float('inf')
    best_acc = opt.best_acc  # default=0

    # 如果有中继点
    if opt.resume:
        model_path = os.path.join(opt.works_dir, opt.resume)
        if os.path.isfile(model_path):
            package = torch.load(model_path,
                                 map_location=lambda storage, loc: storage)
            lr = package.get('lr', opt.lr)
            eps = package.get('eps', opt.eps)
            best_loss = package.get('best_loss', float('inf'))
            best_acc = package.get('best_acc', 0)
            start_epoch = int(package.get('epoch', 0))
            iters = int(package.get('iters', 0))

            acc_report = package.get('acc_report', acc_report)
            loss_report = package.get('loss_report', loss_report)
            visualizer.set_plot_report(acc_report, 'acc.png')
            visualizer.set_plot_report(loss_report, 'loss.png')

            asr_model = E2E.load_model(model_path, 'asr_state_dict')
            fbank_model = FbankModel.load_model(model_path, 'fbank_state_dict')
            logging.info('Loading model {} and iters {}'.format(
                model_path, iters))
        else:
            print("no checkpoint found at {}".format(model_path))
    # convert to cuda
    asr_model.cuda()
    fbank_model.cuda()
    print(asr_model)
    print(fbank_model)

    # Setup an optimizer
    parameters = filter(
        lambda p: p.requires_grad,
        itertools.chain(asr_model.parameters(), fbank_model.parameters()))
    #parameters = filter(lambda p: p.requires_grad, itertools.chain(asr_model.parameters()))
    if opt.opt_type == 'adadelta':
        optimizer = torch.optim.Adadelta(parameters, rho=0.95, eps=eps)
    elif opt.opt_type == 'adam':
        optimizer = torch.optim.Adam(parameters,
                                     lr=lr,
                                     betas=(opt.beta1, 0.999))

    asr_model.train()
    fbank_model.train()
    #NOTE sample_rampup = utils.ScheSampleRampup(opt.sche_samp_start_iter, opt.sche_samp_final_iter, opt.sche_samp_final_rate)
    sample_rampup = utils.ScheSampleRampup(opt.sche_samp_start_epoch,
                                           opt.sche_samp_final_epoch,
                                           opt.sche_samp_final_rate)
    sche_samp_rate = sample_rampup.update(iters)

    # 计算fbank的cmvn输入
    fbank_cmvn_file = os.path.join(opt.exp_path, 'fbank_cmvn.npy')
    if os.path.exists(fbank_cmvn_file):
        # 如果有fbank_cmvn
        fbank_cmvn = np.load(fbank_cmvn_file)
    else:
        # 否则自己生成
        for i, (data) in enumerate(train_loader, start=0):
            utt_ids, spk_ids, inputs, log_inputs, targets, input_sizes, target_sizes = data
            fbank_cmvn = fbank_model.compute_cmvn(inputs, input_sizes)
            # 下面这个if 是原code,通过fbank-cmvn是否为none判断是否break是十分愚蠢的
            if fbank_cmvn is not None:
                np.save(fbank_cmvn_file, fbank_cmvn)
                print('save fbank_cmvn to {}'.format(fbank_cmvn_file))
                break
            # 因此需要通过 cmvn_processed_num 和 cmvn_num 来判断
            if fbank_model.cmvn_processed_num >= fbank_model.cmvn_num:
                # 运行最后一次compute_cmvn
                fbank_cmvn = fbank_model.compute_cmvn(inputs, input_sizes)
                np.save(fbank_cmvn_file, fbank_cmvn)
                print('save fbank_cmvn to {}'.format(fbank_cmvn_file))
                break
    print(fbank_model.cmvn_processed_num)  # 3944
    fbank_cmvn = torch.FloatTensor(fbank_cmvn)

    # 开始训练
    for epoch in range(start_epoch, opt.epochs):
        if epoch > opt.shuffle_epoch:
            print("Shuffling batches for the following epochs")
            train_sampler.shuffle(epoch)
        for i, (data) in enumerate(train_loader,
                                   start=(iters * opt.batch_size) %
                                   len(train_dataset)):
            utt_ids, spk_ids, inputs, log_inputs, targets, input_sizes, target_sizes = data
            fbank_features = fbank_model(inputs, fbank_cmvn)
            # NOTE 下面这个原来的语句,是和 变量data 不匹配的
            # utt_ids, spk_ids, fbank_features, targets, input_sizes, target_sizes = data

            # asr_model 输出的数量是3,而这里却有4个变量
            # 去查以下e2e_model
            # 实际在forward中的输出根本没有context
            # 另外,下面另外一个asr_model 同理
            loss_ctc, loss_att, acc = asr_model(fbank_features, targets,
                                                input_sizes, target_sizes,
                                                sche_samp_rate)
            loss = opt.mtlalpha * loss_ctc + (1 - opt.mtlalpha) * loss_att

            optimizer.zero_grad()  # Clear the parameter gradients
            loss.backward()  # compute backwards

            # compute the gradient norm to check if it is normal or not 'fbank_state_dict': fbank_model.state_dict(),
            grad_norm = torch.nn.utils.clip_grad_norm_(asr_model.parameters(),
                                                       opt.grad_clip)
            if math.isnan(grad_norm):
                logging.warning('grad norm is nan. Do not update model.')
            else:
                optimizer.step()

            iters += 1
            errors = {
                'train/loss': loss.item(),
                'train/loss_ctc': loss_ctc.item(),
                'train/acc': acc,
                'train/loss_att': loss_att.item()
            }
            visualizer.set_current_errors(errors)
            if iters % opt.print_freq == 0:
                visualizer.print_current_errors(epoch, iters)
                state = {
                    'asr_state_dict': asr_model.state_dict(),
                    'opt': opt,
                    'epoch': epoch,
                    'iters': iters,
                    'eps': opt.eps,
                    'lr': opt.lr,
                    'best_loss': best_loss,
                    'best_acc': best_acc,
                    'acc_report': acc_report,
                    'loss_report': loss_report
                }
                filename = 'latest'
                utils.save_checkpoint(state, opt.exp_path, filename=filename)

            if iters % opt.validate_freq == 0:
                sche_samp_rate = sample_rampup.update(iters)
                print("iters {} sche_samp_rate {}".format(
                    iters, sche_samp_rate))
                asr_model.eval()
                fbank_model.eval()
                torch.set_grad_enabled(False)
                num_saved_attention = 0
                for i, (data) in tqdm(enumerate(val_loader, start=0)):
                    utt_ids, spk_ids, inputs, log_inputs, targets, input_sizes, target_sizes = data
                    fbank_features = fbank_model(inputs, fbank_cmvn)
                    # utt_ids, spk_ids, fbank_features, targets, input_sizes, target_sizes = data
                    loss_ctc, loss_att, acc = asr_model(
                        fbank_features, targets, input_sizes, target_sizes,
                        0.0)
                    loss = opt.mtlalpha * loss_ctc + (1 -
                                                      opt.mtlalpha) * loss_att
                    errors = {
                        'val/loss': loss.item(),
                        'val/loss_ctc': loss_ctc.item(),
                        'val/acc': acc,
                        'val/loss_att': loss_att.item()
                    }
                    visualizer.set_current_errors(errors)

                    if opt.num_save_attention > 0 and opt.mtlalpha != 1.0:
                        if num_saved_attention < opt.num_save_attention:
                            att_ws = asr_model.calculate_all_attentions(
                                fbank_features, targets, input_sizes,
                                target_sizes)
                            for x in range(len(utt_ids)):
                                att_w = att_ws[x]
                                utt_id = utt_ids[x]
                                file_name = "{}_ep{}_it{}.png".format(
                                    utt_id, epoch, iters)
                                dec_len = int(target_sizes[x])
                                enc_len = int(input_sizes[x])
                                visualizer.plot_attention(
                                    att_w, dec_len, enc_len, file_name)
                                num_saved_attention += 1
                                if num_saved_attention >= opt.num_save_attention:
                                    break
                asr_model.train()
                fbank_model.train()
                torch.set_grad_enabled(True)

                visualizer.print_epoch_errors(epoch, iters)
                acc_report = visualizer.plot_epoch_errors(
                    epoch, iters, 'acc.png')
                loss_report = visualizer.plot_epoch_errors(
                    epoch, iters, 'loss.png')
                val_loss = visualizer.get_current_errors('val/loss')
                val_acc = visualizer.get_current_errors('val/acc')
                filename = None
                if opt.criterion == 'acc' and opt.mtl_mode is not 'ctc':
                    if val_acc < best_acc:
                        logging.info('val_acc {} > best_acc {}'.format(
                            val_acc, best_acc))
                        opt.eps = utils.adadelta_eps_decay(
                            optimizer, opt.eps_decay)
                    else:
                        filename = 'model.acc.best'
                    best_acc = max(best_acc, val_acc)
                    logging.info('best_acc {}'.format(best_acc))
                elif args.criterion == 'loss':
                    if val_loss > best_loss:
                        logging.info('val_loss {} > best_loss {}'.format(
                            val_loss, best_loss))
                        opt.eps = utils.adadelta_eps_decay(
                            optimizer, opt.eps_decay)
                    else:
                        filename = 'model.loss.best'
                    best_loss = min(val_loss, best_loss)
                    logging.info('best_loss {}'.format(best_loss))
                state = {
                    'asr_state_dict': asr_model.state_dict(),
                    'opt': opt,
                    'epoch': epoch,
                    'iters': iters,
                    'eps': opt.eps,
                    'lr': opt.lr,
                    'best_loss': best_loss,
                    'best_acc': best_acc,
                    'acc_report': acc_report,
                    'loss_report': loss_report
                }
                utils.save_checkpoint(state, opt.exp_path, filename=filename)
                ##filename='epoch-{}_iters-{}_loss-{:.4f}_acc-{:.4f}.pth'.format(epoch, iters, val_loss, val_acc)
                ##utils.save_checkpoint(state, opt.exp_path, filename=filename)
                visualizer.reset()
Beispiel #6
0
def train_main(args):
    args.distributed = args.world_size > 1
    main_proc = True
    if args.distributed:
        if args.gpu_rank:
            torch.cuda.set_device(int(args.gpu_rank))
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)
        main_proc = args.rank == 0  # Only the first proc should save models
    save_folder = args.save_folder

    loss_results, cer_results, wer_results = torch.Tensor(args.epochs), torch.Tensor(args.epochs), torch.Tensor(
        args.epochs)
    best_wer = None
    if args.visdom and main_proc:
        from visdom import Visdom

        viz = Visdom()
        opts = dict(title=args.id, ylabel='', xlabel='Epoch', legend=['Loss', 'WER', 'CER'])
        viz_window = None
        epochs = torch.arange(1, args.epochs + 1)
    if args.tensorboard and main_proc:
        os.makedirs(args.log_dir, exist_ok=True)
        from tensorboardX import SummaryWriter

        tensorboard_writer = SummaryWriter(args.log_dir)
    os.makedirs(save_folder, exist_ok=True)

    avg_loss, start_epoch, start_iter = 0, 0, 0
    if args.continue_from:  # Starting from previous model
        print("Loading checkpoint model %s" % args.continue_from)
        package = torch.load(args.continue_from, map_location=lambda storage, loc: storage)
        model = DeepSpeech.load_model_package(package)
        labels = DeepSpeech.get_labels(model)
        audio_conf = DeepSpeech.get_audio_conf(model)
        parameters = model.parameters()
        optimizer = torch.optim.SGD(parameters, lr=args.lr,
                                    momentum=args.momentum, nesterov=True)
        if not args.finetune:  # Don't want to restart training
            if args.cuda:
                model.cuda()
            optimizer.load_state_dict(package['optim_dict'])
            start_epoch = int(package.get('epoch', 1)) - 1  # Index start at 0 for training
            start_iter = package.get('iteration', None)
            if start_iter is None:
                start_epoch += 1  # We saved model after epoch finished, start at the next epoch.
                start_iter = 0
            else:
                start_iter += 1
            avg_loss = int(package.get('avg_loss', 0))
            loss_results, cer_results, wer_results = package['loss_results'], package[
                'cer_results'], package['wer_results']
            if main_proc and args.visdom and \
                            package[
                                'loss_results'] is not None and start_epoch > 0:  # Add previous scores to visdom graph
                x_axis = epochs[0:start_epoch]
                y_axis = torch.stack(
                    (loss_results[0:start_epoch], wer_results[0:start_epoch], cer_results[0:start_epoch]),
                    dim=1)
                viz_window = viz.line(
                    X=x_axis,
                    Y=y_axis,
                    opts=opts,
                )
            if main_proc and args.tensorboard and \
                            package[
                                'loss_results'] is not None and start_epoch > 0:  # Previous scores to tensorboard logs
                for i in range(start_epoch):
                    values = {
                        'Avg Train Loss': loss_results[i],
                        'Avg WER': wer_results[i],
                        'Avg CER': cer_results[i]
                    }
                    tensorboard_writer.add_scalars(args.id, values, i + 1)
    else:
        with open(args.labels_path) as label_file:
            labels = str(''.join(json.load(label_file)))

        audio_conf = dict(sample_rate=args.sample_rate,
                          window_size=args.window_size,
                          window_stride=args.window_stride,
                          window=args.window,
                          noise_dir=args.noise_dir,
                          noise_prob=args.noise_prob,
                          noise_levels=(args.noise_min, args.noise_max))

        rnn_type = args.rnn_type.lower()
        assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"
        model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                           nb_layers=args.hidden_layers,
                           labels=labels,
                           rnn_type=supported_rnns[rnn_type],
                           audio_conf=audio_conf,
                           bidirectional=args.bidirectional)
        parameters = model.parameters()
        optimizer = torch.optim.SGD(parameters, lr=args.lr,
                                    momentum=args.momentum, nesterov=True)
    criterion = CTCLoss()
    decoder = GreedyDecoder(labels)
    train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels,
                                       normalize=True, augment=args.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels,
                                      normalize=True, augment=False)
    if not args.distributed:
        train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size)
    else:
        train_sampler = DistributedBucketingSampler(train_dataset, batch_size=args.batch_size,
                                                    num_replicas=args.world_size, rank=args.rank)
    train_loader = AudioDataLoader(train_dataset,
                                   num_workers=args.num_workers, batch_sampler=train_sampler)
    test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad:
        print("Shuffling batches for the following epochs")
        train_sampler.shuffle(start_epoch)

    if args.cuda:
        model.cuda()
        if args.distributed:
            model = torch.nn.parallel.DistributedDataParallel(model,
                                                              device_ids=(int(args.gpu_rank),) if args.rank else None)

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(start_epoch, args.epochs):
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        for i, (data) in enumerate(train_loader, start=start_iter):
            if i == len(train_sampler):
                break
            inputs, targets, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            # measure data loading time
            data_time.update(time.time() - end)

            if args.cuda:
                inputs = inputs.cuda()

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            loss = criterion(out, targets, output_sizes, target_sizes)
            loss = loss / inputs.size(0)  # average the loss by minibatch

            inf = float("inf")
            if args.distributed:
                loss_value = reduce_tensor(loss, args.world_size)[0]
            else:
                loss_value = loss.item()
            if loss_value == inf or loss_value == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0

            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
            # SGD step
            optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if not args.silent:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                    (epoch + 1), (i + 1), len(train_sampler), batch_time=batch_time, data_time=data_time, loss=losses))
            if args.checkpoint_per_batch > 0 and i > 0 and (i + 1) % args.checkpoint_per_batch == 0 and main_proc:
                file_path = '%s/deepspeech_checkpoint_epoch_%d_iter_%d.pth' % (save_folder, epoch + 1, i + 1)
                print("Saving checkpoint model to %s" % file_path)
                torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, iteration=i,
                                                loss_results=loss_results,
                                                wer_results=wer_results, cer_results=cer_results, avg_loss=avg_loss),
                           file_path)
            del loss
            del out
        avg_loss /= len(train_sampler)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1, epoch_time=epoch_time, loss=avg_loss))

        start_iter = 0  # Reset start iteration for next epoch
        total_cer, total_wer = 0, 0
        model.eval()
        with torch.no_grad():
            for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader)):
                inputs, targets, input_percentages, target_sizes = data
                input_sizes = input_percentages.mul_(int(inputs.size(3))).int()

                # unflatten targets
                split_targets = []
                offset = 0
                for size in target_sizes:
                    split_targets.append(targets[offset:offset + size])
                    offset += size

                if args.cuda:
                    inputs = inputs.cuda()

                out, output_sizes = model(inputs, input_sizes)

                decoded_output, _ = decoder.decode(out.data, output_sizes)
                target_strings = decoder.convert_to_strings(split_targets)
                wer, cer = 0, 0
                for x in range(len(target_strings)):
                    transcript, reference = decoded_output[x][0], target_strings[x][0]
                    wer += decoder.wer(transcript, reference) / float(len(reference.split()))
                    cer += decoder.cer(transcript, reference) / float(len(reference))
                total_cer += cer
                total_wer += wer
                del out
            wer = total_wer / len(test_loader.dataset)
            cer = total_cer / len(test_loader.dataset)
            wer *= 100
            cer *= 100
            loss_results[epoch] = avg_loss
            wer_results[epoch] = wer
            cer_results[epoch] = cer
            print('Validation Summary Epoch: [{0}]\t'
                  'Average WER {wer:.3f}\t'
                  'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))

            if args.visdom and main_proc:
                x_axis = epochs[0:epoch + 1]
                y_axis = torch.stack(
                    (loss_results[0:epoch + 1], wer_results[0:epoch + 1], cer_results[0:epoch + 1]), dim=1)
                if viz_window is None:
                    viz_window = viz.line(
                        X=x_axis,
                        Y=y_axis,
                        opts=opts,
                    )
                else:
                    viz.line(
                        X=x_axis.unsqueeze(0).expand(y_axis.size(1), x_axis.size(0)).transpose(0, 1),  # Visdom fix
                        Y=y_axis,
                        win=viz_window,
                        update='replace',
                    )
            if args.tensorboard and main_proc:
                values = {
                    'Avg Train Loss': avg_loss,
                    'Avg WER': wer,
                    'Avg CER': cer
                }
                tensorboard_writer.add_scalars(args.id, values, epoch + 1)
                if args.log_params:
                    for tag, value in model.named_parameters():
                        tag = tag.replace('.', '/')
                        tensorboard_writer.add_histogram(tag, to_np(value), epoch + 1)
                        tensorboard_writer.add_histogram(tag + '/grad', to_np(value.grad), epoch + 1)
            if args.checkpoint and main_proc:
                file_path = '%s/deepspeech_%d.pth' % (save_folder, epoch + 1)
                torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
                                                wer_results=wer_results, cer_results=cer_results),
                           file_path)
                # anneal lr
                optim_state = optimizer.state_dict()
                optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0]['lr'] / args.learning_anneal
                optimizer.load_state_dict(optim_state)
                print('Learning rate annealed to: {lr:.6f}'.format(lr=optim_state['param_groups'][0]['lr']))

            if (best_wer is None or best_wer > wer) and main_proc:
                print("Found better validated model, saving to %s" % args.model_path)
                torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
                                                wer_results=wer_results, cer_results=cer_results), args.model_path)
                best_wer = wer

                avg_loss = 0
            if not args.no_shuffle:
                print("Shuffling batches...")
                train_sampler.shuffle(epoch)
Beispiel #7
0
                                       normalize=True, augment=args.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels,
                                      normalize=True, augment=False)
    if not args.distributed:
        train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size)
    else:
        train_sampler = DistributedBucketingSampler(train_dataset, batch_size=args.batch_size,
                                                    num_replicas=args.world_size, rank=args.rank)
    train_loader = AudioDataLoader(train_dataset,
                                   num_workers=args.num_workers, batch_sampler=train_sampler)
    test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad:
        print("Shuffling batches for the following epochs")
        train_sampler.shuffle(start_epoch)

    if args.cuda:
        model.cuda()
        if args.distributed:
            model = torch.nn.parallel.DistributedDataParallel(model,
                                                              device_ids=(int(args.gpu_rank),) if args.rank else None)

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(start_epoch, args.epochs):