Beispiel #1
0
def get_all_data(st: datetime, config):
    # Get all data which we will use to reconstruct the order book
    all_ob_start_time = st - datetime.timedelta(seconds=config.orderbook_window)
    all_ob_end_time = st
    all_ob_data = DataLoader().load_split_data(config.real_root, all_ob_start_time, all_ob_end_time, config.product)

    # Assume orderbook_window > sampling_window, and therefore filter already loaded ob data
    all_sample_start_time = st - datetime.timedelta(seconds=config.sampling_window)
    all_sample_end_time = st
    all_sampling_data = map(lambda x: DataSplitter.get_between(x, all_sample_start_time, all_sample_end_time),
                            all_ob_data)

    # Get future data
    all_future_data_start_time = st
    all_future_data_end_time = st + datetime.timedelta(seconds=config.sampling_window)
    all_future_data = DataLoader().load_split_data(config.real_root, all_future_data_start_time,
                                                   all_future_data_end_time, config.product)

    return all_ob_data, all_sampling_data, all_future_data
Beispiel #2
0
    def get_lyapunov_exponent_over_time(trades, st, et, step_minutes,
                                        window_minutes):
        num_steps = ((et - st).total_seconds() / 60) / step_minutes
        lyap_exps = []
        times = []
        for i in range(0, int(num_steps)):
            iter_st = st + datetime.timedelta(minutes=step_minutes * i)
            iter_et = iter_st + datetime.timedelta(minutes=window_minutes)

            window = DataSplitter.get_between(trades, iter_st, iter_et)
            prices = np.asarray(window['price'].dropna(), dtype=np.float32)

            if len(prices) == 0:
                continue

            lyap_exp = nolds.lyap_r(prices)
            if lyap_exp > 0:
                lyap_exps.append(lyap_exp)
                times.append(iter_et)
            else:
                pass
        return times, lyap_exps
Beispiel #3
0
    def get_hurst_exponent_over_time(trades, st, et, step_minutes,
                                     window_minutes):
        num_steps = ((et - st).total_seconds() / 60) / step_minutes
        hurst_exps = []
        times = []
        for i in range(0, int(num_steps)):
            iter_st = st + datetime.timedelta(minutes=step_minutes * i)
            iter_et = iter_st + datetime.timedelta(minutes=window_minutes)

            window = DataSplitter.get_between(trades, iter_st, iter_et)
            prices = np.asarray(window['price'].dropna(), dtype=np.float32)

            if len(prices) == 0:
                continue

            hurst_exp = nolds.hurst_rs(prices)
            # hurst_exp = nolds.dfa(prices) - 1
            print(hurst_exp)
            if 0 < hurst_exp < 1:
                hurst_exps.append(hurst_exp)
                times.append(iter_st)
            else:
                pass
        return times, hurst_exps
Beispiel #4
0
def backtest_mode(st: datetime.datetime = None):
    all_data_st = take_secs(st, max(config.orderbook_window, config.sampling_window))
    all_data_et = add_secs(st, config.num_predictions * config.interval)

    all_data = DataLoader.load_split_data(config.real_root, all_data_st, all_data_et, config.product)

    validate_future = None
    previous_backtest = None
    current_backtest = None
    sim_future = None
    sim_success = False
    sim_st = None

    for i in range(0, config.num_predictions):
        logger.info("Iteration " + str(i))
        sim_st = add_secs(st, config.interval * i)
        sim_et = add_secs(sim_st, config.simulation_window)

        ob_st = take_secs(sim_st, config.orderbook_window)
        ob_et = sim_st

        sam_st = take_secs(sim_st, config.sampling_window)
        sam_et = sim_st

        try:
            logger.info("Gathering data for simulation at: " + sim_st.isoformat())

            all_sampling_data = map(lambda x: DataSplitter.get_between(x, sam_st, sam_et),
                                    all_data)

            all_future_data = map(lambda x: DataSplitter.get_between(x, sim_st, sim_et),
                                  all_data)

            previous_backtest = current_backtest
            current_backtest = Backtest(config, sim_st, all_sampling_data, all_future_data)

        except Exception as e:
            logger.error("Error occurred when gathering data: " + str(e))
            current_backtest = None

        # Initiate simulation prep synchronously
        prep_success = current_backtest.prepare_simulation()

        # Wait for previous simulation to finish
        sim_future, sim_success = wait_on_simulation(sim_future, sim_st, sim_success)

        # Wait for previous validation to finish
        wait_on_validation(validate_future)
        # Set off validation for previous iteration
        validate_future = run_validation_async(previous_backtest, sim_success)

        # Run this current iteration's simulation async
        if current_backtest is not None and prep_success:
            sim_future = current_backtest.run_simulation()

    # Wait for previous validation to finish
    wait_on_validation(validate_future)

    sim_future, sim_success = wait_on_simulation(sim_future, sim_st, sim_success)

    if sim_success:
        logger.info("Starting final validation")
        current_backtest.evaluate_simulation(prog_start)
Beispiel #5
0
    def test_orders_per_minute_windowed(self):
        product = "LTC-USD"
        root = "/Users/jamesprince/project-data/data/consolidated-feed/"

        st = datetime.datetime(2018, 5, 17, 0, 0, 0)
        et = datetime.datetime(2018, 5, 17, 23, 59, 59)

        feed_df = DataLoader.load_feed(root + product + "/", st, et, product)

        orders = DataSplitter.get_orders(feed_df)
        limit_orders = DataSplitter.get_limit_orders(orders)
        market_orders = DataSplitter.get_market_orders(orders)

        trades = DataSplitter.get_trades(feed_df)
        cancels = DataSplitter.get_cancellations(feed_df)

        print("Total limit orders: " + str(len(limit_orders)))
        print("Total market orders: " + str(len(market_orders)))
        print("Total trades: " + str(len(trades)))
        print("Total cancels: " + str(len(cancels)))

        # total_vol = trades['remaining_size'].sum()
        # print("Total traded volume: " + str(total_vol))

        window_minutes = 60
        step_minutes = 5

        times = []
        num_limit_orders = []
        num_market_orders = []
        num_trades = []
        num_cancels = []

        traded_vols = []

        for i in range(0, int((24 * 60) / step_minutes - 1)):
            window_st = st + datetime.timedelta(seconds=i * step_minutes * 60)
            window_et = window_st + datetime.timedelta(seconds=window_minutes *
                                                       60)

            limit_orders_this_window = DataSplitter.get_between(
                limit_orders, window_st, window_et)
            market_orders_this_window = DataSplitter.get_between(
                market_orders, window_st, window_et)
            trades_this_window = DataSplitter.get_between(
                trades, window_st, window_et)
            cancels_this_window = DataSplitter.get_between(
                cancels, window_st, window_et)

            times.append(window_st)
            num_limit_orders.append(len(limit_orders_this_window))
            num_market_orders.append(len(market_orders_this_window))
            num_trades.append(len(trades_this_window))
            num_cancels.append(len(cancels_this_window))

            # vol_this_window = trades_this_window['remaining_size'].sum()
            # traded_vols.append(vol_this_window)

        Statistics.plot_metric_daily_comparison(times, num_limit_orders,
                                                num_cancels, "LTC-USD", st,
                                                step_minutes, window_minutes,
                                                "Limit Orders", "Cancels")

        Statistics.plot_metric_daily(times, num_limit_orders, "LTC-USD", st,
                                     step_minutes, window_minutes,
                                     "Limit Orders")
        Statistics.plot_metric_daily(times, num_market_orders, "LTC-USD", st,
                                     step_minutes, window_minutes,
                                     "Market Orders")
        Statistics.plot_metric_daily(times, num_trades, "LTC-USD", st,
                                     step_minutes, window_minutes, "Trades")
        Statistics.plot_metric_daily(times, num_cancels, "LTC-USD", st,
                                     step_minutes, window_minutes, "Cancels")
        Statistics.plot_metric_daily(times, traded_vols, "LTC-USD", st,
                                     step_minutes, window_minutes,
                                     "Traded Volume")