args = parser.parse_args() ##################################################### # train parameters ##################################################### n_epochs = args.n_epochs batch_size = args.batch_size model_size = args.model_size ckpt_dir = args.ckpt_dir ##################################################### # datasets ##################################################### dataset = Voxceleb1("/tmp/sv_set/voxc1/fbank64") train_x, train_y = dataset.get_norm("dev/train", scale=24) val_x, val_y = dataset.get_norm("dev/val", scale=24) n_train_samples = len(train_x) steps_per_epoch = n_train_samples // batch_size input_shape = (train_x.shape[1], train_x.shape[2], train_x.shape[3]) def train_generator(): for x, y in zip(train_x, train_y): yield x, y def val_generator(): for x, y in zip(val_x, val_y):
#################################################### # train parameters #################################################### n_epochs = args.n_epochs batch_size = args.batch_size model_size = args.model_size ckpt_dir = args.ckpt_dir model_file = args.model_file #################################################### # datasets #################################################### dataset = Voxceleb1(args.root_dir) train_x, train_y = dataset.get_norm("dev/train", scale=24) val_x, val_y = dataset.get_norm("dev/val", scale=24) input_shape = (train_x.shape[1], train_x.shape[2], train_x.shape[3]) def train_generator(): for x, y in zip(train_x, train_y): yield x, y def val_generator(): for x, y in zip(val_x, val_y): yield x, y