Beispiel #1
0
    def __init__(self, **params):
        self.model = Config.grasp_model
        self.watch_for_model_modification = True
        self.model_last_modified = Loader.get_model_path(
            self.model).stat().st_mtime

        self.monte_carlo = 40 if 'mc' in self.model[1] else None
        self.with_types = 'types' in self.model[1]

        self.output_layer = 'prob' if not self.with_types else ['prob', 'type']
        self.inference = InferencePlanarPose(
            model=Loader.get_model(self.model, output_layer=self.output_layer),
            box=Config.box,
            lower_random_pose=Config.lower_random_pose,
            upper_random_pose=Config.upper_random_pose,
            monte_carlo=self.monte_carlo,
            with_types=self.with_types,
        )
        self.inference.keep_indixes = None
        self.indexer = GraspIndexer(gripper_classes=Config.gripper_classes)
        self.converter = Converter(grasp_z_offset=Config.grasp_z_offset,
                                   box=Config.box)

        # # self.indexer = GraspFinalDIndexer(gripper_classes=Config.gripper_classes, final_d_classes=[0.0, 0.035])
        # self.indexer = LateralIndexer(
        #     angles=[(0, 0), (0.3, 0)],
        #     gripper_classes=[0.05, 0.07, 0.084],
        # )
        # self.converter = Converter(grasp_z_offset=Config.grasp_z_offset, box=Config.box)

        self.reinfer_next_time = True  # Always true in contrast to AgentPredict
Beispiel #2
0
    def infer(self, images: List[OrthographicImage],
              method: SelectionMethod) -> Action:
        if self.monte_carlo:  # Adapt monte carlo progress parameter s
            epoch_in_database = Loader.get_episode_count(Config.grasp_database)
            s_not_bounded = (epoch_in_database - 3500) * 1 / (4500 - 3500)
            self.inference.current_s = max(min(s_not_bounded, 1.0), 0.0)

        current_model_st_mtime = Loader.get_model_path(
            self.model).stat().st_mtime
        if self.watch_for_model_modification and current_model_st_mtime > self.model_last_modified + 0.5:  # [s]
            logger.warning(f'Reload model {self.model}.')
            try:
                self.inference.model = Loader.get_model(
                    self.model, output_layer=self.output_layer)
                self.model_last_modified = Loader.get_model_path(
                    self.model).stat().st_mtime
            except OSError:
                logger.info('Could not load model, probabily file locked.')

        if len(images) == 3:
            images[2].mat = images[2].mat[:, :, ::-1]  # BGR to RGB

        action = self.inference.infer(images, method)
        self.indexer.to_action(action)

        estimated_reward_lower_than_threshold = action.estimated_reward < Config.bin_empty_at_max_probability
        bin_empty = estimated_reward_lower_than_threshold and Epoch.selection_method_should_be_high(
            method)

        if bin_empty:
            return Action('bin_empty', safe=1)

        self.converter.calculate_pose(action, images)
        return action
    def test_heatmap(self):
        _, image = Loader.get_action('cylinder-cube-1', '2019-03-26-09-51-08-827', 'ed-v')

        if TEST_WITH_GPU:
            model = Loader.get_model('cylinder-cube-1', 'model-6-arch-more-layer', output_layer='prob')

            heatmapper = Heatmap(InferencePlanarPose, model, box=self.box)
            heatmap = heatmapper.render(image)
            imageio.imwrite(str(self.file_path / f'gen-heatmap.png'), heatmap)
Beispiel #4
0
    def __init__(self, prediction_model):
        self.grasp_model = Config.grasp_model
        self.shift_model = Config.shift_model

        self.with_types = 'types' in self.grasp_model[1]

        self.output_layer = 'prob' if not self.with_types else ['prob', 'type']
        self.grasp_inference = InferencePlanarPose(
            Loader.get_model(self.grasp_model, output_layer=self.output_layer),
            box=Config.box,
            lower_random_pose=Config.lower_random_pose,
            upper_random_pose=Config.upper_random_pose,
            with_types=self.with_types,
            input_uncertainty=True,
        )
        self.grasp_inference.keep_indixes = [0, 1]
        self.grasp_indexer = GraspIndexer(
            gripper_classes=Config.gripper_classes)

        self.shift_inference = InferencePlanarPose(
            Loader.get_model(self.shift_model, output_layer='prob'),
            box=Config.box,
            lower_random_pose=Config.lower_random_pose,
            upper_random_pose=Config.upper_random_pose,
            with_types=False,
        )
        self.shift_inference.a_space = np.linspace(
            -3.0, 3.0, 26)  # [rad] # Don't use a=0.0
        self.shift_inference.size_original_cropped = (240, 240)
        self.shift_indexer = ShiftIndexer(shift_distance=Config.shift_distance)

        self.grasp_shift_indexer = GraspShiftIndexer(
            gripper_classes=Config.gripper_classes,
            shift_distance=Config.shift_distance,
        )

        self.converter = Converter(grasp_z_offset=Config.grasp_z_offset,
                                   shift_z_offset=0.007,
                                   box=Config.box)  # [m]

        self.prediction_model = prediction_model
        self.monte_carlo = 20

        self.actions_since_last_inference = 0
        self.actions: List[Action] = []

        self.output_path = Path.home() / 'Desktop'

        self.reinfer_next_time = True

        # First inference is slower
        self.prediction_model.predict([
            np.zeros((1, 64, 64, 1)),
            np.zeros((1, 1, 1, 1)),
            np.zeros((1, 1, 1)),
            np.zeros((1, 1, 1, 8))
        ])
    def test_agent_predict(self):
        # 2019-03-11-14-56-07-284, 2019-03-14-11-26-17-352, 2019-03-12-16-14-54-658
        _, image = Loader.get_action('cylinder-cube-1', '2019-03-11-14-56-07-284', 'ed-v')

        if TEST_WITH_GPU:
            prediction_model = Loader.get_model('cylinder-cube-1', 'predict-generator-3', custom_objects={'_one_hot': one_hot_gen(4)})
            grasp_model = Loader.get_model('cylinder-cube-1', 'model-6-arch-more-layer', output_layer='prob')
            shift_model = Loader.get_model('shifting', 'model-1', output_layer='prob')

            agent = PredictAgent(prediction_model, grasp_model, shift_model)
            agent.predict_actions([image], SelectionMethod.Top5, N=5, verbose=True)
Beispiel #6
0
 def check_for_model_reload(self):
     current_model_st_mtime = Loader.get_model_path(
         self.model).stat().st_mtime
     if self.watch_for_model_modification and current_model_st_mtime > self.model_last_modified + 0.5:  # [s]
         logger.warning(f'Reload model {self.model}.')
         try:
             self.inference.model = Loader.get_model(
                 self.model, output_layer=self.output_layer)
             self.model_last_modified = Loader.get_model_path(
                 self.model).stat().st_mtime
         except OSError:
             logger.info('Could not load model, probabily file locked.')
Beispiel #7
0
    def BuildArch(self):
        graph = tf.Graph()
        with graph.as_default():
            self.dataset = Loader(self.cfg)
            self.cfg.vocab_size = self.dataset.vocabsize+1
            self.cfg.label_size = self.dataset.labelsize

            self.placeholders()
            self.CapsuleModel()
            self.losses()
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                self.optimizer = tf.train.AdamOptimizer(self.learning_rate)
                self.train_op = self.optimizer.minimize(self.loss, name='train_op')
        print('model builded')
        return graph
    def test_difference(self):
        _, image1, image2 = Loader.get_action('cube-1',
                                              '2018-10-22-23-42-52-096',
                                              ['ed-v', 'ed-after'])

        diff = image_difference(image1, image2)
        imageio.imwrite(str(self.file_path / f'gen-diff.png'), diff.mat)
Beispiel #9
0
def get_mean(episode):
    _, image = Loader.get_action(episode[0], episode[1]['id'], 'ed-after')

    if image is None:
        return {'id': episode[1]['id'], 'mean': 1e6}

    return {'id': episode[1]['id'], 'mean': np.mean(image.mat)}
    def load_image(self, collection, episode_id, action_id, suffix):
        image = Loader.get_image(collection, episode_id, action_id, suffix, as_float=True)
        draw_around_box(image, box=Config.box)

        image.mat = cv2.resize(image.mat, (self.size_input[0] // self.size_memory_scale, self.size_input[1] // self.size_memory_scale))
        image.pixel_size /= self.size_memory_scale
        return image
Beispiel #11
0
    def infer(self, images: List[OrthographicImage], method: SelectionMethod,
              **params) -> List[Action]:
        if self.monte_carlo:  # Adapt monte carlo progress parameter s
            epoch_in_collection = Loader.get_episode_count(Config.collection)
            s_not_bounded = (epoch_in_collection - 3500) * 1 / (4500 - 3500)
            self.inference.current_s = max(min(s_not_bounded, 1.0), 0.0)

        self.check_for_model_reload()

        if len(images) == 3:
            images[2].mat = images[2].mat[:, :, ::-1]  # BGR to RGB

        action = self.inference.infer(images, method)
        self.indexer.to_action(action)

        print(action, method)

        estimated_reward_lower_than_threshold = action.estimated_reward < Config.bin_empty_at_max_probability
        bin_empty = estimated_reward_lower_than_threshold and Epoch.selection_method_should_be_high(
            method)

        if bin_empty:
            return [Action('bin_empty', safe=1)]

        self.converter.calculate_pose(action, images)
        return [action]
Beispiel #12
0
def api_image(collection_name: str, episode_id: str, action_id: str,
              suffix: str):
    def send_image(image):
        _, image_encoded = cv2.imencode('.jpg', image)
        return flask.send_file(io.BytesIO(image_encoded),
                               mimetype='image/jpeg')

    def send_empty_image():
        empty = np.zeros((480, 752, 1))
        cv2.putText(empty,
                    '?', (310, 300),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    6,
                    100,
                    thickness=6)
        return send_image(empty)

    if flask.request.values.get('pose'):
        action = Action(data=json.loads(flask.request.values.get('pose')))
        image = Loader.get_image(collection_name,
                                 episode_id,
                                 int(action_id),
                                 suffix,
                                 images=action.images)
    else:
        try:
            action, image = Loader.get_action(collection_name, episode_id,
                                              int(action_id), suffix)
        except Exception:
            app.logger.warn('Could not find image:', collection_name,
                            episode_id, action_id, suffix)
            return send_empty_image()

    if suffix not in action.images.keys():
        app.logger.warn(
            f'Could not find suffix {collection_name}-{episode_id}-{action_id}-{suffix}'
        )
        return send_empty_image()

    draw_pose(image, action.pose, convert_to_rgb=True)
    # draw_pose(image, action.pose, convert_to_rgb=True, reference_pose=action.images[suffix]['pose'])

    if flask.request.values.get('box', default=0, type=int):
        draw_around_box(image, box=Config.box, draw_lines=True)

    return send_image(image.mat / 255)
    def test_agent(self):
        _, image = Loader.get_action('cylinder-cube-1', '2019-03-26-09-08-16-480', 'ed-v')

        if TEST_WITH_GPU:
            agent = Agent()
            result = agent.infer([image], SelectionMethod.Max)

            self.assertEqual(result.safe, True)
            self.assertEqual(result.method, SelectionMethod.Max)
    def test(self, collection, episode_id):
        grasp = (Loader.get_image(collection, episode_id, 0, 'ed-v').mat /
                 255).astype(np.uint8)
        place = (Loader.get_image(collection, episode_id, 1, 'ed-v').mat /
                 255).astype(np.uint8)
        goal = (Loader.get_image(collection, episode_id, 0, 'ed-goal').mat /
                255).astype(np.uint8)

        grasp_c = cv2.cvtColor(grasp, cv2.COLOR_GRAY2RGB)
        goal_c = cv2.cvtColor(goal, cv2.COLOR_GRAY2RGB)

        # Difference
        diff = cv2.absdiff(place, goal)
        diff[:80, :] = 0
        diff[-80:, :] = 0
        diff[:, :80] = 0
        diff[:, -80:] = 0

        # Find contours
        ret, thresh = cv2.threshold(diff, 20, 255, 0)
        contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                               cv2.CHAIN_APPROX_NONE)
        print('Number contours: ', len(contours))

        cv2.drawContours(goal_c, contours, -1, (255, 0, 0))

        # Bounding rect of largest area
        c = max(contours, key=cv2.contourArea)
        x, y, w, h = cv2.boundingRect(c)
        cv2.rectangle(goal_c, (x, y), (x + w, y + h), (0, 255, 0), 2)

        # Template matching
        template = goal[y:y + h, x:x + w]
        res = cv2.matchTemplate(grasp, template, cv2.TM_CCOEFF)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

        top_left = max_loc
        bottom_right = (top_left[0] + w, top_left[1] + h)

        cv2.rectangle(grasp_c, top_left, bottom_right, (0, 0, 255), 1)

        cv2.imshow('grasp', grasp_c)
        cv2.imshow('goal', goal_c)
        cv2.waitKey(2000)
Beispiel #15
0
def api_image(episode_id):
    def send_image(image):
        _, image_encoded = cv2.imencode('.jpg', image)
        return flask.send_file(io.BytesIO(image_encoded),
                               mimetype='image/jpeg')

    def send_empty_image():
        empty = np.zeros((480, 752, 1))
        cv2.putText(empty,
                    '?', (310, 300),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    6,
                    100,
                    thickness=6)
        return send_image(empty)

    database_name = flask.request.values.get('database')
    suffix = flask.request.values.get('suffix')

    if flask.request.values.get('pose'):
        action = Action(data=json.loads(flask.request.values.get('pose')))
        image = Loader.get_image(database_name,
                                 episode_id,
                                 suffix,
                                 images=action.images)
    else:
        action, image = Loader.get_action(database_name, episode_id, suffix)

    if not action or suffix not in action.images.keys() or not image:
        return send_empty_image()

    draw_pose(image,
              action.pose,
              convert_to_rgb=True,
              reference_pose=action.images['ed-v']['pose'])

    if int(flask.request.values.get('box', default=0)):
        draw_around_box(image, box=Config.box, draw_lines=True)

    return send_image(image.mat / 255)
Beispiel #16
0
    def __init__(self):
        # Parameters
        self.grasp_model = rospy.get_param('graspro/grasp_model', 'graspro-v1')

        self.gripper_classes = rospy.get_param('graspro/gripper_classes')
        self.z_offset = rospy.get_param('graspro/z_offset', 0.0)

        self.ensenso_depth = rospy.get_param('graspro/camera/ensenso_depth')
        self.realsense_depth = rospy.get_param(
            'graspro/camera/realsense_depth')
        self.realsense_color = rospy.get_param(
            'graspro/camera/realsense_color')

        self.lower_random_pose = rospy.get_param('graspro/lower_random_pose',
                                                 [-0.1, -0.1, 0.0])
        self.upper_random_pose = rospy.get_param('graspro/upper_random_pose',
                                                 [0.1, 0.1, 0.0])

        self.box_center = rospy.get_param('graspro/bin_center', [0, 0, 0])
        self.box_size = rospy.get_param('graspro/bin_size', False)
        self.box = {'center': self.box_center, 'size': self.box_size}

        self.publish_heatmap = rospy.get_param('graspro/publish_heatmap',
                                               False)

        # Inference
        self.inference = PlanarInference(
            model=Loader.get_model(self.grasp_model, output_layer='prob'),
            box=self.box,
            lower_random_pose=self.lower_random_pose,
            upper_random_pose=self.upper_random_pose,
        )
        self.indexer = GraspIndexer(gripper_classes=self.gripper_classes)
        self.converter = Converter(grasp_z_offset=self.z_offset,
                                   box=self.box)  # [m]

        if self.publish_heatmap:
            self.heatmapper = Heatmap(self.inference,
                                      self.inference.model,
                                      box=self.box)
            self.heatmap_publisher = rospy.Publisher('graspro/heatmap')

        self.bridge = CvBridge()
        self.image_publisher = rospy.Publisher('graspro/pose_on_image',
                                               Image,
                                               queue_size=10)

        s1 = rospy.Service('graspro/infer_grasp', InferGrasp, self.infer_grasp)
        s2 = rospy.Service('graspro/estimate_reward_for_grasp',
                           EstimateRewardForGrasp,
                           self.estimate_reward_for_grasp)
        rospy.spin()
    def test_loader(self):
        for suffix in ['ed-v', 'ed-side_b-0_400']:
            action, image = Loader.get_action('cylinder-cube-1',
                                              '2019-06-25-15-49-13-551',
                                              suffix)

            draw_around_box(image, box=Config.box)
            imageio.imwrite(
                str(self.file_path / f'gen-draw-around-box-{suffix}.png'),
                image.mat)

            self.assertEqual(image.mat.dtype, np.uint16)
            self.assertEqual(image.pixel_size, 2000.0)
            self.assertEqual(action.method, SelectionMethod.Prob)
Beispiel #18
0
    def __init__(self):
        self.grasp_inference = InferencePlanarPose(
            model=Loader.get_model(Config.grasp_model, output_layer='prob'),
            box=Config.box,
            lower_random_pose=Config.lower_random_pose,
            upper_random_pose=Config.upper_random_pose,
        )
        self.grasp_indexer = GraspIndexer(gripper_classes=Config.gripper_classes)

        self.converter = Converter(grasp_z_offset=Config.grasp_z_offset, shift_z_offset=0.007, box=Config.box)  # [m]

        if Config.shift_objects:
            self.shift_inference = InferencePlanarPose(
                model=Loader.get_model(Config.shift_model, output_layer='prob'),
                box=Config.box,
                lower_random_pose=Config.lower_random_pose,
                upper_random_pose=Config.upper_random_pose,
            )
            self.shift_inference.a_space = np.linspace(-3.0, 3.0, 26)  # [rad] # Don't use a=0.0
            self.shift_inference.size_original_cropped = (240, 240)
            self.shift_indexer = ShiftIndexer(shift_distance=Config.shift_distance)

        self.reinfer_next_time = True  # Always true in contrast to AgentPredict
Beispiel #19
0
    def get_episodes_between(cls,
                             collection: str,
                             lower_id: str,
                             upper_id: str = None,
                             grasp_success=False,
                             suffix=('ed-v', )):
        query = {'id': {'$gte': lower_id}}
        if upper_id:
            query['id']['$lte'] = upper_id

        if grasp_success:
            query['actions.0.reward'] = 1

        episodes = Loader.yield_episodes(collection, query=query)
        return list((d, e['id'], 0, suffix) for d, e in episodes)
Beispiel #20
0
def api_upload_image():
    database = flask.request.values.get('database')
    episode_id = flask.request.values.get('id')
    suffix = flask.request.values.get('suffix', default='v')
    filepath = Loader.get_image_path(database, episode_id, suffix)
    filepath.parent.mkdir(exist_ok=True, parents=True)

    image_data = flask.request.data
    if flask.request.files:
        image_data = flask.request.files['file'].read()

    image_buffer = np.fromstring(image_data, np.uint8)
    image = cv2.imdecode(image_buffer, cv2.IMREAD_UNCHANGED)
    cv2.imwrite(str(filepath), image)
    return flask.jsonify(success=True)
Beispiel #21
0
def api_upload_image():
    collection = flask.request.values.get('collection')
    episode_id = flask.request.values.get('episode_id')
    action_id = flask.request.values.get('action_id', type=int)
    suffix = flask.request.values.get('suffix')
    filepath = Loader.get_image_path(collection,
                                     episode_id,
                                     action_id,
                                     suffix,
                                     image_format='png')
    filepath.parent.mkdir(exist_ok=True, parents=True)

    image_data = flask.request.data
    if flask.request.files:
        image_data = flask.request.files['file'].read()

    image_buffer = np.fromstring(image_data, np.uint8)
    image = cv2.imdecode(image_buffer, cv2.IMREAD_UNCHANGED)
    cv2.imwrite(str(filepath), image)
    return flask.jsonify(success=True)
def print_before_after_image(episode_id: str):
    action, before_image, after_image = Loader.get_action(
        'shifting', episode_id, ['ed-v', 'ed-after'])

    area_before_image = get_area_of_interest(before_image,
                                             action.pose,
                                             size_cropped=(300, 300),
                                             size_result=(150, 150))
    area_after_image = get_area_of_interest(after_image,
                                            action.pose,
                                            size_cropped=(300, 300))

    white = [255 * 255] * 3
    draw_line(area_before_image,
              action.pose,
              Affine(0, 0),
              Affine(0.036, 0),
              color=white,
              thickness=2)
    draw_line(area_before_image,
              action.pose,
              Affine(0.036, 0.0),
              Affine(0.026, -0.008),
              color=white,
              thickness=2)
    draw_line(area_before_image,
              action.pose,
              Affine(0.036, 0.0),
              Affine(0.026, 0.008),
              color=white,
              thickness=2)

    cv2.imwrite(
        str(Path.home() / 'Desktop' / f'example-{episode_id}-before.png'),
        area_before_image.mat)
    cv2.imwrite(
        str(Path.home() / 'Desktop' / f'example-{episode_id}-after.png'),
        area_after_image.mat)

    print('---')
    print(episode_id)
    def __init__(self,
                 databases: Union[str, List[str]],
                 validation_databases: Union[str, List[str]] = None,
                 indexer=None):
        validation_databases = validation_databases or []

        self.databases = [databases] if isinstance(databases,
                                                   str) else databases
        self.validation_databases = [validation_databases] if isinstance(
            validation_databases, str) else validation_databases

        self.output_path = Loader.get_database_path(self.databases[0])
        self.image_output_path = self.output_path / 'input'
        self.model_path = self.output_path / 'models'
        self.result_path = self.output_path / 'results'

        self.indexer = indexer if indexer else GraspIndexer(
            gripper_classes=Config.gripper_classes)
        self.box = Config.box

        self.percent_validation_set = 0.2
Beispiel #24
0
def save_episode(predictor, database, episode_id, reward=1, action_type=1):
    action, image, image_after = Loader.get_action(database, episode_id,
                                                   ['ed-v', 'ed-after'])

    draw_around_box(image, box=Config.box)
    draw_around_box(image_after, box=Config.box)

    # background_color = image.value_from_depth(get_distance_to_box(image, Config.box))

    area = get_area_of_interest(image,
                                action.pose,
                                size_cropped=(256, 256),
                                size_result=predictor.size)
    area_after = get_area_of_interest(image_after,
                                      action.pose,
                                      size_cropped=(256, 256),
                                      size_result=predictor.size)

    result = predictor.predict(area,
                               reward=reward,
                               action_type=action_type,
                               sampling=True,
                               number=20)

    save_dir = Path.home() / 'Desktop' / 'predict-examples' / episode_id
    save_dir.mkdir(exist_ok=True)
    cv2.imwrite(str(save_dir / f'{predictor.name}_s_bef.png'), area.mat)
    cv2.imwrite(str(save_dir / f'{predictor.name}_s_aft.png'), area_after.mat)
    cv2.imwrite(str(save_dir / f'{predictor.name}_result.png'),
                result[0] * 255)

    if predictor.uncertainty:
        result[result < 0.1] = np.nan
        uncertainty = np.nanvar(result, axis=0)
        uncertainty /= np.nanmax(uncertainty) * 0.25

        uncertainty = np.clip(uncertainty * 255, 0, 255).astype(np.uint8)
        uncertainty = cv2.applyColorMap(uncertainty, cv2.COLORMAP_JET)

        cv2.imwrite(str(save_dir / f'{predictor.name}_unc.png'), uncertainty)
Beispiel #25
0
import time

from config import Config
from data.loader import Loader

if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='Print summary of saved model.')
    parser.add_argument('-m', '--model', dest='model', type=str, required=True)
    parser.add_argument('--line-length',
                        dest='line_length',
                        type=int,
                        default=140)
    args = parser.parse_args()

    model = Loader.get_model(args.model)

    model.summary(line_length=args.line_length)

    if 'placing' in args.model:
        model.get_layer('grasp').summary(line_length=args.line_length)
        model.get_layer('place').summary(line_length=args.line_length)
        model.get_layer('merge').summary(line_length=args.line_length)

        print('Grasp Dropout',
              model.get_layer('grasp').get_layer('dropout_6').rate)
        print('Place Dropout',
              model.get_layer('place').get_layer('dropout_21').rate)
        print('Merge Dropout',
              model.get_layer('merge').get_layer('dropout_24').rate)
Beispiel #26
0
 def post(self):
   self.response.headers['Content-Type'] = 'text/plain'
   loader = Loader(self.response.out.write)
   loader.load_data(self.request.get('in'))
Beispiel #27
0
import sys

from flask import Flask, request, jsonify
from flask.templating import render_template

from data.loader import Loader
from web.column_stat import Stat


if len(sys.argv) < 2:
    print("Usage: python main.py path-to-data-file")
    sys.exit(1)

app = Flask(__name__)
df = Loader.load(sys.argv[1])


def get_options(key, value=None):
    return [
        k.split(':')[1]
        for k in request.form
        if k.startswith(key + ':') and
        (value is None or request.form[k] == value)
    ]


@app.route('/', methods=['GET'])
def index():
    return render_template('index.html', **{
        'columns': sorted([
            Stat(df, col) for col in df.columns
    def manipulate(self) -> None:
        current_bin_episode = None
        goal_images = None

        for epoch in Config.epochs:
            while self.history.total() < epoch.number_episodes:
                current_episode = Episode()
                current_bin_episode = current_bin_episode if current_bin_episode else current_episode.id
                current_selection_method = self.get_current_selection_method(
                    epoch)

                start = time.time()

                place_action_in_other_bin = Config.release_in_other_bin and not Config.release_during_grasp_action
                place_bin = Frames.get_next_bin(
                    self.current_bin
                ) if place_action_in_other_bin else self.current_bin

                if (not Config.predict_images) or self.agent.reinfer_next_time:
                    self.robot.recover_from_errors()

                    if not place_action_in_other_bin or Config.take_after_images:
                        self.robot.move_joints(
                            Frames.bin_joint_values[self.current_bin], self.md)

                    b, c = random.choice(
                        Config.overview_image_angles
                    ) if Config.lateral_overview_image else 0, 0
                    camera_frame_overview = Frames.get_camera_frame(
                        self.current_bin, b=b, c=c)
                    if not Frames.is_camera_frame_safe(camera_frame_overview):
                        continue

                    if place_action_in_other_bin:
                        self.robot.move_cartesian(
                            Frames.camera,
                            Frames.get_camera_frame(place_bin, b=b, c=c),
                            self.md)
                    elif Config.take_goal_images:
                        self.robot.move_cartesian(Frames.camera,
                                                  camera_frame_overview,
                                                  self.md)

                    if Config.take_goal_images:
                        new_goal_images = self.take_goal_images(
                            current_bin=place_bin,
                            current_goal_images=goal_images)
                        goal_images = new_goal_images if new_goal_images else goal_images

                    elif Config.use_goal_images:
                        attr = random.choice(
                            GoalDatabase.get(Config.goal_images_dataset))
                        goal_images = [
                            Loader.get_image(attr[0], attr[1], attr[2], s)
                            for s in attr[3]
                        ]

                    if place_action_in_other_bin:
                        place_image_frame = self.robot.current_pose(
                            Frames.camera)
                        place_images = self.take_images(
                            image_frame=place_image_frame,
                            current_bin=place_bin)

                    if Config.mode is Mode.Measure or Config.lateral_overview_image:
                        self.robot.move_cartesian(Frames.camera,
                                                  camera_frame_overview,
                                                  self.md)

                    image_frame = self.robot.current_pose(Frames.camera)
                    images = self.take_images(image_frame=image_frame)

                    if not Frames.is_gripper_frame_safe(
                            self.robot.current_pose(Frames.gripper)):
                        logger.info('Image frame not safe!')
                        self.robot.recover_from_errors()
                        continue

                input_images = self.get_input_images(images)
                input_place_images = self.get_input_images(
                    place_images) if place_action_in_other_bin else None
                input_goal_images = None

                if Config.use_goal_images:
                    if isinstance(goal_images, list) and isinstance(
                            goal_images[0], list):
                        goal_images_single = goal_images.pop(0)
                    else:
                        goal_images_single = goal_images

                    input_goal_images = self.get_input_images(
                        goal_images_single)

                actions = self.agent.infer(
                    input_images,
                    current_selection_method,
                    goal_images=input_goal_images,
                    place_images=input_place_images,
                )

                for action_id, action in enumerate(actions):
                    logger.info(
                        f'Action ({action_id+1}/{len(actions)}): {action}')

                for action_id, action in enumerate(actions):
                    action.images = {}
                    action.save = True
                    action.bin = self.current_bin
                    action.bin_episode = current_bin_episode

                    current_action_place_in_other_bin = place_action_in_other_bin and action.type == 'place'
                    current_image_pose = place_image_frame if current_action_place_in_other_bin else image_frame
                    current_bin = place_bin if current_action_place_in_other_bin else self.current_bin

                    if Config.mode is Mode.Measure:
                        before_images = place_images if current_action_place_in_other_bin else images
                        self.saver.save_image(before_images,
                                              current_episode.id,
                                              action_id,
                                              'v',
                                              action=action)

                        if Config.use_goal_images:
                            self.saver.save_image(goal_images_single,
                                                  current_episode.id,
                                                  action_id,
                                                  'goal',
                                                  action=action)

                    self.saver.save_action_plan(action, current_episode.id)

                    logger.info(
                        f'Executing action: {action_id} at time {time.time() - self.overall_start:0.1f}'
                    )

                    if Config.set_zero_reward:
                        action.safe = -1

                    execute_action = True

                    if action.type == 'bin_empty':
                        action.save = False
                        execute_action = False
                    elif action.type == 'new_image':
                        action.save = False
                        execute_action = False
                        self.agent.reinfer_next_time = True

                    if action.safe <= 0:
                        execute_action = False
                        action.collision = True

                        # Set actions after this action to unsafe
                        for a in actions[action_id + 1:]:
                            a.safe = action.safe

                        reason = 'not within box' if action.safe == -1 else 'not a number'
                        logger.warning(
                            f'Action (type={action.type}) is {reason} (safe={action.safe}).'
                        )

                        if action.safe == 0 and action.type in [
                                'grasp', 'shift'
                        ]:
                            logger.warning(f'Episode is not saved.')
                            current_episode.save = False
                            break

                        if action.type == 'place' and action_id > 0:
                            prior_action = actions[action_id - 1]

                            if prior_action.type == 'grasp' and prior_action.reward > 0:
                                central_pose = RobotPose(
                                    affine=Affine(z=-0.28), d=action.pose.d)

                                action_frame = Frames.get_action_pose(
                                    action_pose=central_pose,
                                    image_pose=current_image_pose)
                                self.place(current_episode, action_id, action,
                                           action_frame, current_image_pose)

                    # Dont place if grasp was not successful
                    if action.type == 'place' and action_id > 0:
                        prior_action = actions[action_id - 1]

                        if prior_action.type == 'grasp' and (
                                prior_action.reward == 0
                                or prior_action.safe < 1):
                            execute_action = False

                    if Config.take_lateral_images and action.save and Config.mode is Mode.Measure:
                        md_lateral = MotionData().with_dynamics(1.0)

                        for b, c in Config.lateral_images_angles:
                            lateral_frame = Frames.get_camera_frame(
                                current_bin,
                                a=action.pose.a,
                                b=b,
                                c=c,
                                reference_pose=image_frame)

                            if not Frames.is_camera_frame_safe(
                                    lateral_frame) or (b == 0.0 and c == 0.0):
                                continue

                            lateral_move_succss = self.robot.move_cartesian(
                                Frames.camera, lateral_frame,
                                md_lateral)  # Remove a for global b, c pose
                            if lateral_move_succss:
                                self.saver.save_image(
                                    self.take_images(current_bin=current_bin),
                                    current_episode.id,
                                    action_id,
                                    f'lateral_b{b:0.3f}_c{c:0.3f}'.replace(
                                        '.', '_'),
                                    action=action)

                    if execute_action:
                        action_frame = Frames.get_action_pose(
                            action_pose=action.pose,
                            image_pose=current_image_pose)

                        if Config.mode is Mode.Measure and Config.take_direct_images:
                            self.robot.move_cartesian(
                                Frames.camera,
                                Affine(z=0.308) * Affine(b=0.0, c=0.0) *
                                action_frame)
                            self.saver.save_image(
                                self.take_images(current_bin=current_bin),
                                current_episode.id,
                                action_id,
                                'direct',
                                action=action)

                        if action.type == 'grasp':
                            self.grasp(current_episode, action_id, action,
                                       action_frame, current_image_pose)

                            if Config.use_goal_images and self.last_after_images and not place_action_in_other_bin:  # Next action is Place
                                place_action_id = action_id + 1
                                actions[
                                    place_action_id].pose.d = self.gripper.width(
                                    )  # Use current gripper width for safety analysis
                                self.agent.converter.calculate_pose(
                                    actions[place_action_id],
                                    self.last_after_images)

                        elif action.type == 'shift':
                            old_reward_around_action = 0.0
                            self.shift(current_episode, action_id, action,
                                       action_frame, current_image_pose)
                            new_reward_around_action = 0.0

                            action.reward = new_reward_around_action - old_reward_around_action

                        elif action.type == 'place':
                            self.place(current_episode,
                                       action_id,
                                       action,
                                       action_frame,
                                       current_image_pose,
                                       place_bin=place_bin)
                            action.reward = actions[action_id - 1].reward

                    else:
                        if Config.take_after_images:
                            self.robot.move_cartesian(Frames.camera,
                                                      current_image_pose,
                                                      self.md)
                            self.saver.save_image(
                                self.take_images(current_bin=current_bin),
                                current_episode.id,
                                action_id,
                                'after',
                                action=action)

                    action.execution_time = time.time() - start
                    logger.info(
                        f'Time for action: {action.execution_time:0.3f} [s]')

                    if action.save:
                        current_episode.actions.append(action)
                        self.history.append(current_episode)
                    else:
                        break

                    logger.info(
                        f'Episodes (reward / done / total): {self.history.total_reward(action_type="grasp")} / {self.history.total()} / {sum(e.number_episodes for e in Config.epochs)}'
                    )
                    logger.info(
                        f'Last success: {self.history.failed_grasps_since_last_success_in_bin(self.current_bin)} cycles ago.'
                    )

                    # history.save_grasp_rate_prediction_step_evaluation(Config.evaluation_path)

                # Switch bin
                should_change_bin_for_evaluation = (
                    Config.mode is Mode.Evaluate
                    and self.history.successful_grasps_in_bin(self.current_bin)
                    == Config.change_bin_at_number_of_success_grasps)
                should_change_bin = (
                    Config.mode is not Mode.Evaluate
                    and (self.history.failed_grasps_since_last_success_in_bin(
                        self.current_bin) >=
                         Config.change_bin_at_number_of_failed_grasps
                         or action.type == 'bin_empty'))
                if should_change_bin_for_evaluation or (Config.change_bins
                                                        and should_change_bin):
                    if Config.mode is Mode.Evaluate:
                        pass
                        # history.save_grasp_rate_prediction_step_evaluation(Config.evaluation_path)

                    self.current_bin = Frames.get_next_bin(self.current_bin)
                    self.agent.reinfer_next_time = True
                    current_bin_episode = None
                    logger.info('Switch to other bin.')

                    if Config.mode is not Mode.Perform and Config.home_gripper:
                        self.gripper.homing()

                if Config.mode is Mode.Measure and current_episode.actions and current_episode.save:
                    logger.info(f'Save episode {current_episode.id}.')
                    self.saver.save_episode(current_episode)

                # Retrain model
                if Config.train_model and self.history.total(
                ) > 0 and not self.history.total(
                ) % Config.train_model_every_number_cycles:
                    logger.warning('Retrain model!')
                    self.retrain_model()

        logger.info('Finished cleanly.')
Beispiel #29
0
from pathlib import Path
import time

import cv2

from config import Config
from data.loader import Loader
from utils.image import draw_around_box, draw_pose, get_area_of_interest_new

if __name__ == '__main__':
    lateral = False
    suffix = 'ed-lateral_b-0_400' if lateral else 'ed-v'
    action, image = Loader.get_action('placing-3', '2019-12-12-16-07-12-857',
                                      0, 'ed-v')

    # image = image.translate((0.0, 0.0, 0.05))
    # image = image.rotate_x(-0.3, (0.0, 0.25))

    draw_around_box(image, box=Config.box)
    # draw_pose(image, action.pose, convert_to_rgb=True)

    size_input = image.mat.shape[::-1]
    size_cropped = (200, 200)
    size_result = (32, 32)

    scale = 4
    image.mat = cv2.resize(image.mat,
                           (size_input[0] // scale, size_input[1] // scale))
    image.pixel_size /= scale

    s = time.time()
from actions.indexer import GraspIndexer
from config import Config
from data.loader import Loader
from inference.planar import InferencePlanarPose
from picking.image import draw_pose
from picking.param import SelectionMethod

if __name__ == '__main__':
    # inference = InferencePlanarPose(
    #     Loader.get_model('cylinder-cube-mc-1', 'model-1-mc', output_layer='prob'),
    #     box=Config.box,
    #     monte_carlo=160
    # )
    inference = InferencePlanarPose(
        Loader.get_model('cylinder-cube-1',
                         'model-6-arch-more-layer',
                         output_layer='prob'),
        box=Config.box,
    )
    # inference = InferencePlanarPose(
    #   Loader.get_model('shifting', 'model-3'),
    #   box=Config.box,
    # )

    _, image = Loader.get_action('cylinder-cube-mc-1',
                                 '2019-07-02-13-27-22-246', 'ed-v')

    indexer = GraspIndexer(gripper_classes=Config.gripper_classes)

    converter = Converter(grasp_z_offset=Config.grasp_z_offset, box=Config.box)
import os

from agents.agent import Agent
from data.loader import Loader

os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = str(1)

agent = Agent()

data = []

for i, (d, e) in enumerate(Loader.yield_episodes('cylinder-cube-mc-1')):
    action, image = Loader.get_action(d, e['id'], 'ed-v')

    if not hasattr(action, 'estimated_reward'):
        continue

    data.append({
        'id': e['id'],
        # 'old': action.estimated_reward,
        'new': agent.reward_for_action([image], action),
        'reward': action.reward
    })

sorted_data = sorted(data, key=lambda k: -abs(k['reward'] - k['new']))

for i, e in enumerate(sorted_data[:20]):
    print(i, e)