Beispiel #1
0
    def __init__(self, data_cfg):
        # TODO: Change cfg to regular argument names
        super().__init__()
        self.data_cfg = data_cfg
        self.videoParams = {"videoFPS": self.data_cfg["VIDEO_FPS"]}
        self.gpuAvailable = torch.cuda.is_available()
        self.data_cls = LRS2Pretrain if self.data_cfg["PRETRAIN"] else LRS2Main

        if self.data_cfg["PRETRAIN"]:
            self.trainData = LRS2Pretrain("pretrain",
                                          self.data_cfg["DATA_DIRECTORY"],
                                          self.data_cfg["PRETRAIN_NUM_WORDS"],
                                          self.data_cfg["CHAR_TO_INDEX"],
                                          self.data_cfg["STEP_SIZE"],
                                          self.videoParams)
            self.valData = LRS2Pretrain("preval",
                                        self.data_cfg["DATA_DIRECTORY"],
                                        self.data_cfg["PRETRAIN_NUM_WORDS"],
                                        self.data_cfg["CHAR_TO_INDEX"],
                                        self.data_cfg["STEP_SIZE"],
                                        self.videoParams)
        else:
            self.trainData = LRS2Main("train",
                                      self.data_cfg["DATA_DIRECTORY"],
                                      self.data_cfg["MAIN_REQ_INPUT_LENGTH"],
                                      self.data_cfg["CHAR_TO_INDEX"],
                                      self.data_cfg["STEP_SIZE"],
                                      self.videoParams)
            self.valData = LRS2Main("val",
                                    self.data_cfg["DATA_DIRECTORY"],
                                    self.data_cfg["MAIN_REQ_INPUT_LENGTH"],
                                    self.data_cfg["CHAR_TO_INDEX"],
                                    self.data_cfg["STEP_SIZE"],
                                    self.videoParams)
Beispiel #2
0
def lrs2pretrain_checker():
    videoParams = {"videoFPS":args["VIDEO_FPS"]}
    pretrainData = LRS2Pretrain(args["DATA_DIRECTORY"], args["PRETRAIN_NUM_WORDS"], args["CHAR_TO_INDEX"], args["STEP_SIZE"], videoParams)
    numSamples = len(pretrainData)
    index = np.random.randint(0, numSamples)
    inp, trgt, inpLen, trgtLen = pretrainData[index]
    print(inp.shape, trgt.shape, inpLen.shape, trgtLen.shape)
    return
Beispiel #3
0
def lrs2pretrain_checker():
    audioParams = {
        "stftWindow": args["STFT_WINDOW"],
        "stftWinLen": args["STFT_WIN_LENGTH"],
        "stftOverlap": args["STFT_OVERLAP"]
    }
    noiseParams = {
        "noiseFile": args["DATA_DIRECTORY"] + "/noise.wav",
        "noiseProb": args["NOISE_PROBABILITY"],
        "noiseSNR": args["NOISE_SNR_DB"]
    }
    pretrainData = LRS2Pretrain(args["DATA_DIRECTORY"],
                                args["PRETRAIN_NUM_WORDS"],
                                args["CHAR_TO_INDEX"], args["STEP_SIZE"],
                                audioParams, noiseParams)
    numSamples = len(pretrainData)
    index = np.random.randint(0, numSamples)
    inp, trgt, inpLen, trgtLen = pretrainData[index]
    print(inp.shape, trgt.shape, inpLen.shape, trgtLen.shape)
    return
Beispiel #4
0
def main():

    matplotlib.use("Agg")
    np.random.seed(args["SEED"])
    torch.manual_seed(args["SEED"])
    gpuAvailable = torch.cuda.is_available()
    device = torch.device("cuda" if gpuAvailable else "cpu")
    kwargs = {"num_workers": args["NUM_WORKERS"], "pin_memory": True} if gpuAvailable else {}
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


    #declaring the pretrain and the preval datasets and the corresponding dataloaders
    videoParams = {"videoFPS":args["VIDEO_FPS"]}
    pretrainData = LRS2Pretrain("pretrain", args["DATA_DIRECTORY"], args["PRETRAIN_NUM_WORDS"], args["CHAR_TO_INDEX"], args["STEP_SIZE"],
                                videoParams)
    pretrainLoader = DataLoader(pretrainData, batch_size=args["BATCH_SIZE"], collate_fn=collate_fn, shuffle=True, **kwargs)
    prevalData = LRS2Pretrain("preval", args["DATA_DIRECTORY"], args["PRETRAIN_NUM_WORDS"], args["CHAR_TO_INDEX"], args["STEP_SIZE"],
                              videoParams)
    prevalLoader = DataLoader(prevalData, batch_size=args["BATCH_SIZE"], collate_fn=collate_fn, shuffle=True, **kwargs)


    #declaring the model, optimizer, scheduler and the loss function
    model = VideoNet(args["TX_NUM_FEATURES"], args["TX_ATTENTION_HEADS"], args["TX_NUM_LAYERS"], args["PE_MAX_LENGTH"],
                     args["TX_FEEDFORWARD_DIM"], args["TX_DROPOUT"], args["NUM_CLASSES"])
    model.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args["INIT_LR"], betas=(args["MOMENTUM1"], args["MOMENTUM2"]))
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=args["LR_SCHEDULER_FACTOR"],
                                                     patience=args["LR_SCHEDULER_WAIT"], threshold=args["LR_SCHEDULER_THRESH"],
                                                     threshold_mode="abs", min_lr=args["FINAL_LR"], verbose=True)
    loss_function = nn.CTCLoss(blank=0, zero_infinity=False)


    #removing the checkpoints directory if it exists and remaking it
    if os.path.exists(args["CODE_DIRECTORY"] + "/checkpoints"):
        while True:
            ch = input("Continue and remove the 'checkpoints' directory? y/n: ")
            if ch == "y":
                break
            elif ch == "n":
                exit()
            else:
                print("Invalid input")
        shutil.rmtree(args["CODE_DIRECTORY"] + "/checkpoints")

    os.mkdir(args["CODE_DIRECTORY"] + "/checkpoints")
    os.mkdir(args["CODE_DIRECTORY"] + "/checkpoints/models")
    os.mkdir(args["CODE_DIRECTORY"] + "/checkpoints/plots")


    #loading the pretrained weights
    if args["PRETRAINED_MODEL_FILE"] is not None:
        print("\n\nPre-trained Model File: %s" %(args["PRETRAINED_MODEL_FILE"]))
        print("\nLoading the pre-trained model .... \n")
        model.load_state_dict(torch.load(args["CODE_DIRECTORY"] + args["PRETRAINED_MODEL_FILE"], map_location=device))
        model.to(device)
        print("Loading Done.\n")



    trainingLossCurve = list()
    validationLossCurve = list()
    trainingWERCurve = list()
    validationWERCurve = list()


    #printing the total and trainable parameters in the model
    numTotalParams, numTrainableParams = num_params(model)
    print("\nNumber of total parameters in the model = %d" %(numTotalParams))
    print("Number of trainable parameters in the model = %d\n" %(numTrainableParams))

    print("Number of Words = %d" %(args["PRETRAIN_NUM_WORDS"]))
    print("\nPretraining the model .... \n")

    trainParams = {"spaceIx":args["CHAR_TO_INDEX"][" "], "eosIx":args["CHAR_TO_INDEX"]["<EOS>"]}
    valParams = {"decodeScheme":"greedy", "spaceIx":args["CHAR_TO_INDEX"][" "], "eosIx":args["CHAR_TO_INDEX"]["<EOS>"]}

    for step in range(args["NUM_STEPS"]):

        #train the model for one step
        trainingLoss, trainingCER, trainingWER = train(model, pretrainLoader, optimizer, loss_function, device, trainParams)
        trainingLossCurve.append(trainingLoss)
        trainingWERCurve.append(trainingWER)

        #evaluate the model on validation set
        validationLoss, validationCER, validationWER = evaluate(model, prevalLoader, loss_function, device, valParams)
        validationLossCurve.append(validationLoss)
        validationWERCurve.append(validationWER)

        #printing the stats after each step
        print("Step: %03d || Tr.Loss: %.6f  Val.Loss: %.6f || Tr.CER: %.3f  Val.CER: %.3f || Tr.WER: %.3f  Val.WER: %.3f"
              %(step, trainingLoss, validationLoss, trainingCER, validationCER, trainingWER, validationWER))

        #make a scheduler step
        scheduler.step(validationWER)


        #saving the model weights and loss/metric curves in the checkpoints directory after every few steps
        if ((step%args["SAVE_FREQUENCY"] == 0) or (step == args["NUM_STEPS"]-1)) and (step != 0):

            savePath = args["CODE_DIRECTORY"] + "/checkpoints/models/pretrain_{:03d}w-step_{:04d}-wer_{:.3f}.pt".format(args["PRETRAIN_NUM_WORDS"],
                                                                                                                        step, validationWER)
            torch.save(model.state_dict(), savePath)

            plt.figure()
            plt.title("Loss Curves")
            plt.xlabel("Step No.")
            plt.ylabel("Loss value")
            plt.plot(list(range(1, len(trainingLossCurve)+1)), trainingLossCurve, "blue", label="Train")
            plt.plot(list(range(1, len(validationLossCurve)+1)), validationLossCurve, "red", label="Validation")
            plt.legend()
            plt.savefig(args["CODE_DIRECTORY"] + "/checkpoints/plots/pretrain_{:03d}w-step_{:04d}-loss.png".format(args["PRETRAIN_NUM_WORDS"], step))
            plt.close()

            plt.figure()
            plt.title("WER Curves")
            plt.xlabel("Step No.")
            plt.ylabel("WER")
            plt.plot(list(range(1, len(trainingWERCurve)+1)), trainingWERCurve, "blue", label="Train")
            plt.plot(list(range(1, len(validationWERCurve)+1)), validationWERCurve, "red", label="Validation")
            plt.legend()
            plt.savefig(args["CODE_DIRECTORY"] + "/checkpoints/plots/pretrain_{:03d}w-step_{:04d}-wer.png".format(args["PRETRAIN_NUM_WORDS"], step))
            plt.close()


    print("\nPretraining Done.\n")

    return
Beispiel #5
0
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

#declaring the pretrain and the preval datasets and the corresponding dataloaders
audioParams = {
    "stftWindow": args["STFT_WINDOW"],
    "stftWinLen": args["STFT_WIN_LENGTH"],
    "stftOverlap": args["STFT_OVERLAP"]
}
noiseParams = {
    "noiseFile": args["DATA_DIRECTORY"] + "/noise.wav",
    "noiseProb": args["NOISE_PROBABILITY"],
    "noiseSNR": args["NOISE_SNR_DB"]
}
pretrainData = LRS2Pretrain("pretrain", args["DATA_DIRECTORY"],
                            args["PRETRAIN_NUM_WORDS"], args["CHAR_TO_INDEX"],
                            args["STEP_SIZE"], audioParams, noiseParams)
pretrainLoader = DataLoader(pretrainData,
                            batch_size=args["BATCH_SIZE"],
                            collate_fn=collate_fn,
                            shuffle=True,
                            **kwargs)
noiseParams = {
    "noiseFile": args["DATA_DIRECTORY"] + "/noise.wav",
    "noiseProb": 0,
    "noiseSNR": args["NOISE_SNR_DB"]
}
prevalData = LRS2Pretrain("preval", args["DATA_DIRECTORY"],
                          args["PRETRAIN_NUM_WORDS"], args["CHAR_TO_INDEX"],
                          args["STEP_SIZE"], audioParams, noiseParams)
prevalLoader = DataLoader(prevalData,