Beispiel #1
0
def apply_net(dataset, arch, log_fname, test_idx, params_file, alpha):
    data, train_size, test_size, input_shape, nclass = reader.load(dataset)
    # k will be in filename for weights of this net
    net, input_x, target_y, k = arch(input_shape, nclass, alpha=alpha)

    if params_file is not None:
        ll.set_all_param_values(net, np.load(params_file))

    print(utils.net_configuration(net, short=0))

    print('start compile',
          datetime.datetime.now().isoformat()[:16].replace('T', ' '))
    net_output = utils.get_output_score(net, input_x, target_y)
    print('finish compile',
          datetime.datetime.now().isoformat()[:16].replace('T', ' '))

    base_fname = './experiments/logs/{fname}.txt'
    printf = get_logging_print(base_fname.format(fname=log_fname))
    utils.test_output(net_output, data, test_idx, alpha, printf)
Beispiel #2
0
def main(_):
    batch_size = FLAGS.batch_size
    summaries_dir = FLAGS.summaries_dir
    if summaries_dir == '':
        summaries_dir = './logs/vgg_pt_{}_{}'.format(FLAGS.dataset, FLAGS.suffix)
        summaries_dir += time.strftime('_%d-%m-%Y_%H:%M:%S')
    checkpoints_dir = FLAGS.checkpoints_dir
    if checkpoints_dir == '':
        checkpoints_dir = './checkpoints/vgg_pt_{}_{}'.format(FLAGS.dataset, FLAGS.suffix)
        checkpoints_dir += time.strftime('_%d-%m-%Y_%H:%M:%S')
    with tf.Graph().as_default() as graph, tf.device('/gpu:0'):
        # LOADING DATA
        data, len_train, len_test, input_shape, nclass = reader.load(FLAGS.dataset)
        X_train, y_train, X_test, y_test = data

        # BUILDING GRAPH
        images = tf.placeholder(tf.float32, shape=[batch_size, input_shape[1], input_shape[2], input_shape[3]],
                                name='images')
        labels = tf.placeholder(tf.int32, shape=[batch_size], name='labels')
        lr = tf.placeholder(tf.float32, shape=[], name='learning_rate')
        wd = tf.placeholder(tf.float32, shape=[], name='weight_decay')
        global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
        inference = lambda x, reuse, is_training, stohastic: net_vgglike(x, nclass, wd, is_training, stohastic, reuse)
        loss = lambda logits, y: metrics.sgvlb(logits, y, len_train)
        train_op, probs_train, probs_test_det, probs_test_stoh, train_loss = utils.build_graph(images, labels, loss, inference, lr, global_step)
        train_summaries = tf.summary.merge_all()

        train_acc_plc = tf.placeholder(tf.float32, shape=[], name='train_acc_placeholder')
        train_acc_summary = tf.summary.scalar('train_accuracy_stoch', train_acc_plc)
        test_acc_plc = tf.placeholder(tf.float32, shape=[], name='test_acc_placeholder')
        test_acc_summary = tf.summary.scalar('test_accuracy_det', test_acc_plc)
        test_summaries = tf.summary.merge([train_acc_summary, test_acc_summary])

        # SUMMARIES WRITERS
        train_writer = tf.summary.FileWriter(summaries_dir + '/train', graph)
        test_writer = tf.summary.FileWriter(summaries_dir + '/test', graph)

        # TRAINING
        n_epochs = 550
        ensemble_size = 5
        lr_policy = lambda epoch_num: policies.linear_decay(
            epoch_num, decay_start=0, total_epochs=n_epochs, start_value=1e-3)
        steps_per_train = len_train/batch_size
        steps_per_test = len_test/batch_size

        saver = tf.train.Saver()
        config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
        with tf.Session(config=config) as sess:
            # initialize all variables
            sess.run(tf.global_variables_initializer())

            # restore checkpoints if it's provided
            if FLAGS.checkpoint != '':
                restorer = tf.train.Saver(tf.get_collection('variables'))
                restorer.restore(sess, FLAGS.checkpoint)

            start_time = time.time()
            la = tf.get_collection('log_alpha', scope=None)
            print la
            for epoch_num in range(n_epochs):
                train_acc = 0.0
                if epoch_num > 500:
                    ensemble_size = 10

                if epoch_num > 540:
                    ensemble_size = 100

                train_loss_ = 0

                for batch_images, batch_labels in reader.batch_iterator_train_crop_flip(X_train, y_train, batch_size):
                    _, train_probs, summary, train_lossb = sess.run([train_op, probs_train, train_summaries, train_loss],
                                                 feed_dict={lr: lr_policy(epoch_num),
                                                            images: batch_images,
                                                            labels: batch_labels})
                    train_writer.add_summary(summary, global_step.eval())
                    train_loss_ += train_lossb/steps_per_train
                    train_acc += metrics.accurracy_np(train_probs, batch_labels)/steps_per_train
                test_acc_det, test_acc_stoch, test_acc_ens = 0.0, 0.0, 0.0
                for i in range(steps_per_test):
                    batch_images = X_test[i*batch_size:(i+1)*batch_size]
                    batch_labels = y_test[i*batch_size:(i+1)*batch_size]

                    test_probs_stoch = np.zeros([batch_size, nclass])
                    test_probs_det = np.zeros([batch_size, nclass])
                    test_probs_ens = np.zeros([batch_size, nclass])
                    for sample_num in range(ensemble_size):
                        probs_batch_stoch = sess.run([probs_test_stoh], feed_dict={images: batch_images,
                                                                               labels: batch_labels})[0]
                        test_probs_ens += probs_batch_stoch/ensemble_size
                        if sample_num == 0:
                            test_probs_det, la_values = sess.run([probs_test_det, la], feed_dict={images: batch_images, labels: batch_labels})
                            test_probs_stoch = probs_batch_stoch
                    test_acc_det += metrics.accurracy_np(test_probs_det, batch_labels)/steps_per_test
                    test_acc_stoch += metrics.accurracy_np(test_probs_stoch, batch_labels)/steps_per_test
                    test_acc_ens += metrics.accurracy_np(test_probs_ens, batch_labels)/steps_per_test
                saver.save(sess, checkpoints_dir + 'cifar100/cur_model.ckpt')

                epoch_time, start_time = int(time.time() - start_time), time.time()

                print 'epoch_num %3d' % epoch_num,
                print 'train_loss %.3f' % train_loss_,
                print 'train_acc %.3f' % train_acc,
                print 'test_acc_det %.3f' % test_acc_det,
                print 'test_acc_stoch %.3f' % test_acc_stoch,
                print 'test_acc_ens %.3f' % test_acc_ens,
                print 'epoch_time %.3f' % epoch_time,
                print 'la_values', la_values
Beispiel #3
0
def main(_):
    batch_size = FLAGS.batch_size
    summaries_dir = FLAGS.summaries_dir
    if summaries_dir == '':
        summaries_dir = './logs/lenet5_sbp_{}_l2{}'.format(
            FLAGS.dataset, FLAGS.l2)
        summaries_dir += time.strftime('_%d-%m-%Y_%H:%M:%S')
    checkpoints_dir = FLAGS.checkpoints_dir
    if checkpoints_dir == '':
        checkpoints_dir = './checkpoints/lenet5_sbp_{}_l2{}'.format(
            FLAGS.dataset, FLAGS.l2)
        checkpoints_dir += time.strftime('_%d-%m-%Y_%H:%M:%S')
    with tf.Graph().as_default() as graph, tf.device('/cpu:0'):
        with tf.variable_scope(tf.get_variable_scope()) as scope:
            # LOADING DATA
            data, len_train, len_test, input_shape, nclass = reader.load(
                FLAGS.dataset)
            X_train, y_train, X_test, y_test = data

            # BUILDING GRAPH
            images = tf.placeholder(tf.float32,
                                    shape=input_shape,
                                    name='images')
            labels = tf.placeholder(tf.int32, shape=[None], name='labels')
            lr = tf.placeholder(tf.float32, shape=[], name='learning_rate')
            tf.summary.scalar('learning rate', lr)
            optimizer = tf.train.AdamOptimizer(learning_rate=lr, beta1=0.95)
            global_step = tf.get_variable(
                'global_step', [],
                initializer=tf.constant_initializer(0),
                trainable=False)
            logits_op_train = lenet5(images, nclass, True, False)
            tf.get_variable_scope().reuse_variables()
            logits_op_test = lenet5(images, nclass, False, True)
            loss_op_train = metrics.sgvlb(logits_op_train,
                                          labels,
                                          reuse=False,
                                          num_examples=len_train,
                                          l2_weight=FLAGS.l2)
            tf.summary.scalar('train_loss', loss_op_train)
            loss_op_test = tf.reduce_mean(
                tf.nn.sparse_softmax_cross_entropy_with_logits(
                    logits=logits_op_test, labels=labels))
            accuracy_op_train = metrics.accuracy(logits_op_train, labels)
            accuracy_op_test = metrics.accuracy(logits_op_test, labels)
            tf.summary.scalar('train_accuracy', accuracy_op_train)
        train_op = optimizer.minimize(loss_op_train, global_step=global_step)

        train_summaries = tf.summary.merge_all()
        test_acc = tf.placeholder(tf.float32,
                                  shape=[],
                                  name='test_acc_placeholder')
        test_acc_summary = tf.summary.scalar('test accuracy', test_acc)
        test_loss = tf.placeholder(tf.float32,
                                   shape=[],
                                   name='test_loss_placeholder')
        test_loss_summary = tf.summary.scalar('test loss', test_loss)
        test_summaries = tf.summary.merge(
            [test_acc_summary, test_loss_summary])

        # SUMMARIES WRITERS
        train_writer = tf.summary.FileWriter(summaries_dir + '/train', graph)
        test_writer = tf.summary.FileWriter(summaries_dir + '/test', graph)

        # TRAINING
        n_epochs = 200
        lr_policy = lambda epoch_num: policies.linear_decay(epoch_num,
                                                            decay_start=100,
                                                            total_epochs=
                                                            n_epochs,
                                                            start_value=1e-3)

        saver = tf.train.Saver()
        config = tf.ConfigProto(allow_soft_placement=True,
                                log_device_placement=False)
        with tf.Session(config=config) as sess:
            # initialize all variables
            sess.run(tf.global_variables_initializer())

            # restore checkpoint
            net_variables = filter(lambda v: 'sbp' not in v.name.lower(),
                                   tf.get_collection('variables'))
            net_variables = filter(lambda v: 'adam' not in v.name.lower(),
                                   net_variables)
            restorer = tf.train.Saver(net_variables)
            restorer.restore(sess, FLAGS.checkpoint)

            best_test_acc = 0.0
            for epoch_num in range(n_epochs):
                for i in range(len_train / batch_size + 1):
                    batch_images, batch_labels = X_train[i*batch_size:(i+1)*batch_size], \
                                                 y_train[i*batch_size:(i+1)*batch_size]
                    _, summary = sess.run(
                        [train_op, train_summaries],
                        feed_dict={
                            lr: lr_policy(epoch_num),
                            images: batch_images,
                            labels: batch_labels
                        })
                    train_writer.add_summary(summary, global_step.eval())
                test_loss_total, test_acc_total = 0.0, 0.0
                steps_per_test = len_test / batch_size + 1
                for i in range(steps_per_test):
                    batch_images, batch_labels = X_test[i*batch_size:(i+1)*batch_size], \
                                                 y_test[i*batch_size:(i+1)*batch_size]
                    batch_test_acc, batch_test_loss = sess.run(
                        [accuracy_op_test, loss_op_test],
                        feed_dict={
                            lr: lr_policy(epoch_num),
                            images: batch_images,
                            labels: batch_labels
                        })
                    test_acc_total += batch_test_acc / steps_per_test
                    test_loss_total += batch_test_loss / steps_per_test
                if test_acc_total >= best_test_acc:
                    saver.save(sess, checkpoints_dir + '/best_model.ckpt')
                    best_test_acc = test_acc_total
                saver.save(sess, checkpoints_dir + '/cur_model.ckpt')
                summary = sess.run([test_summaries],
                                   feed_dict={
                                       test_acc: test_acc_total,
                                       test_loss: test_loss_total
                                   })
                for s in summary:
                    test_writer.add_summary(s, global_step.eval())
Beispiel #4
0
def main(_):
    batch_size = FLAGS.batch_size
    summaries_dir = FLAGS.summaries_dir
    if summaries_dir == '':
        summaries_dir = './logs/vgg_do_{}_{}'.format(FLAGS.dataset, FLAGS.suffix)
        summaries_dir += time.strftime('_%d-%m-%Y_%H:%M:%S')
    checkpoints_dir = FLAGS.checkpoints_dir
    if checkpoints_dir == '':
        checkpoints_dir = './checkpoints/vgg_do_{}_{}'.format(FLAGS.dataset, FLAGS.suffix)
        checkpoints_dir += time.strftime('_%d-%m-%Y_%H:%M:%S')
    with tf.Graph().as_default() as graph, tf.device('/gpu:0'):
        # LOADING DATA
        data, len_train, len_test, input_shape, nclass = reader.load(FLAGS.dataset)
        X_train, y_train, X_test, y_test = data

        # BUILDING GRAPH
        images = tf.placeholder(tf.float32, shape=[batch_size, input_shape[1], input_shape[2], input_shape[3]],
                                name='images')
        labels = tf.placeholder(tf.int32, shape=[batch_size], name='labels')
        lr = tf.placeholder(tf.float32, shape=[], name='learning_rate')
        wd = tf.placeholder(tf.float32, shape=[], name='weight_decay')
        global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
        inference = lambda x, reuse, is_training, stohastic: net_vgglike(x, nclass, wd, is_training, stohastic, reuse)
        loss = lambda logits, y: metrics.log_loss(logits, y, len_train)
        train_op, probs_train, probs_test_det, probs_test_stoh, train_loss = utils.build_graph(images, labels, loss, inference, lr, global_step)
        train_summaries = tf.summary.merge_all()

        train_acc_plc = tf.placeholder(tf.float32, shape=[], name='train_acc_placeholder')
        train_acc_summary = tf.summary.scalar('train_accuracy_stoch', train_acc_plc)
        test_acc_plc = tf.placeholder(tf.float32, shape=[], name='test_acc_placeholder')
        test_acc_summary = tf.summary.scalar('test_accuracy_det', test_acc_plc)
        test_summaries = tf.summary.merge([train_acc_summary, test_acc_summary])

        # SUMMARIES WRITERS
        train_writer = tf.summary.FileWriter(summaries_dir + '/train', graph)
        test_writer = tf.summary.FileWriter(summaries_dir + '/test', graph)

        # TRAINING
        n_epochs = 550
        ensemble_size = 5
        lr_policy = lambda epoch_num: policies.linear_decay(
            epoch_num, decay_start=0, total_epochs=n_epochs, start_value=1e-3)
        wd_policy = lambda epoch_num: FLAGS.l2
        steps_per_train = len_train/batch_size
        steps_per_test = len_test/batch_size

        saver = tf.train.Saver()
        config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
        with tf.Session(config=config) as sess:
            # initialize all variables
            sess.run(tf.global_variables_initializer())

            # restore checkpoints if it's provided
            if FLAGS.checkpoint != '':
                restorer = tf.train.Saver(tf.get_collection('variables'))
                restorer.restore(sess, FLAGS.checkpoint)

            start_time = time.time()
            for epoch_num in range(n_epochs):
                if epoch_num > 500:
                    ensemble_size = 10

                if epoch_num > 540:
                    ensemble_size = 100

                train_acc = 0.0
                train_loss_ = 0.0
                for batch_images, batch_labels in reader.batch_iterator_train_crop_flip(X_train, y_train, batch_size):
                    _, train_probs, summary, train_lossb = sess.run(
                        [train_op, probs_train, train_summaries, train_loss],
                        feed_dict={lr: lr_policy(epoch_num),
                                   images: batch_images,
                                   labels: batch_labels})
                    train_writer.add_summary(summary, global_step.eval())
                    train_loss_ += train_lossb / steps_per_train
                    train_acc += metrics.accurracy_np(train_probs, batch_labels)/steps_per_train
                test_acc_det, test_acc_stoch, test_acc_ens = 0.0, 0.0, 0.0
                for i in range(steps_per_test):
                    batch_images = X_test[i*batch_size:(i+1)*batch_size]
                    batch_labels = y_test[i*batch_size:(i+1)*batch_size]

                    test_probs_stoch = np.zeros([batch_size, nclass])
                    test_probs_det = np.zeros([batch_size, nclass])
                    test_probs_ens = np.zeros([batch_size, nclass])
                    for sample_num in range(ensemble_size):
                        probs_batch_stoch = sess.run([probs_test_stoh], feed_dict={images: batch_images,
                                                                               labels: batch_labels})[0]
                        test_probs_ens += probs_batch_stoch/ensemble_size
                        if sample_num == 0:
                            test_probs_det = sess.run([probs_test_det], feed_dict={images: batch_images,
                                                                              labels: batch_labels})[0]
                            test_probs_stoch = probs_batch_stoch
                    test_acc_det += metrics.accurracy_np(test_probs_det, batch_labels)/steps_per_test
                    test_acc_stoch += metrics.accurracy_np(test_probs_stoch, batch_labels)/steps_per_test
                    test_acc_ens += metrics.accurracy_np(test_probs_ens, batch_labels)/steps_per_test
                saver.save(sess, checkpoints_dir + '/cur_model.ckpt')

                epoch_time, start_time = int(time.time() - start_time), time.time()

                print 'epoch_num %3d' % epoch_num,
                print 'train_loss %.3f' % train_loss_,
                print 'train_acc %.3f' % train_acc,
                print 'test_acc_det %.3f' % test_acc_det,
                print 'test_acc_stoch %.3f' % test_acc_stoch,
                print 'test_acc_ens %.3f' % test_acc_ens,
                print 'epoch_time %.3f' % epoch_time
Beispiel #5
0
def main(_):
    batch_size = FLAGS.batch_size
    summaries_dir = FLAGS.summaries_dir
    if summaries_dir == '':
        summaries_dir = './logs/lenet5_{}_{}'.format(FLAGS.dataset, FLAGS.suffix)
        summaries_dir += time.strftime('_%d-%m-%Y_%H:%M:%S')
    checkpoints_dir = FLAGS.checkpoints_dir
    if checkpoints_dir == '':
        checkpoints_dir = './checkpoints/lenet5_{}_{}'.format(FLAGS.dataset, FLAGS.suffix)
        checkpoints_dir += time.strftime('_%d-%m-%Y_%H:%M:%S')
    with tf.Graph().as_default() as graph, tf.device('/gpu:0'):
        # LOADING DATA
        data, len_train, len_test, input_shape, nclass = reader.load(FLAGS.dataset)
        X_train, y_train, X_test, y_test = data

        # BUILDING GRAPH
        images = tf.placeholder(tf.float32, shape=[batch_size, input_shape[1], input_shape[2], input_shape[3]],
                                name='images')
        labels = tf.placeholder(tf.int32, shape=[batch_size], name='labels')
        lr = tf.placeholder(tf.float32, shape=[], name='learning_rate')
        wd = tf.placeholder(tf.float32, shape=[], name='weight_decay')
        global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
        inference = lambda x, reuse: lenet5(x, nclass, wd, reuse)
        loss = lambda logits, y: metrics.log_loss(logits, y, len_train)
        train_op, probs = utils.build_graph(images, labels, loss, inference, lr, global_step)
        train_summaries = tf.summary.merge_all()

        train_acc_plc = tf.placeholder(tf.float32, shape=[], name='train_acc_placeholder')
        train_acc_summary = tf.summary.scalar('train_accuracy_stoch', train_acc_plc)
        test_acc_plc = tf.placeholder(tf.float32, shape=[], name='test_acc_placeholder')
        test_acc_summary = tf.summary.scalar('test_accuracy_det', test_acc_plc)
        test_summaries = tf.summary.merge([train_acc_summary, test_acc_summary])

        # SUMMARIES WRITERS
        train_writer = tf.summary.FileWriter(summaries_dir + '/train', graph)
        test_writer = tf.summary.FileWriter(summaries_dir + '/test', graph)

        # TRAINING
        n_epochs = 50
        lr_policy = lambda epoch_num: policies.linear_decay(
            epoch_num, decay_start=0, total_epochs=n_epochs, start_value=1e-3)
        wd_policy = lambda epoch_num: FLAGS.l2
        steps_per_train = len_train/batch_size
        steps_per_test = len_test/batch_size

        saver = tf.train.Saver()
        config = tf.ConfigProto(allow_soft_placement=True)
        with tf.Session(config=config) as sess:
            # initialize all variables
            sess.run(tf.global_variables_initializer())

            # restore checkpoints if it's provided
            if FLAGS.checkpoint != '':
                restorer = tf.train.Saver(tf.get_collection('variables'))
                restorer.restore(sess, FLAGS.checkpoint)

            start_time = time.time()
            for epoch_num in range(n_epochs):
                train_acc = 0.0

                for i in range(steps_per_train):
                    batch_images, batch_labels = X_train[i*batch_size:(i+1)*batch_size], \
                                                 y_train[i*batch_size:(i+1)*batch_size]
                    _, probs_batch, summary = sess.run([train_op, probs, train_summaries],
                                                       feed_dict={lr: lr_policy(epoch_num),
                                                                  wd: wd_policy(epoch_num),
                                                                  images: batch_images,
                                                                  labels: batch_labels})
                    train_writer.add_summary(summary, global_step.eval())
                    train_acc += metrics.accurracy_np(probs_batch, batch_labels)/steps_per_train

                test_acc = 0.0
                for i in range(steps_per_test):
                    batch_images = X_test[i*batch_size:(i+1)*batch_size]
                    batch_labels = y_test[i*batch_size:(i+1)*batch_size]

                    probs_batch = sess.run([probs], feed_dict={images: batch_images,
                                                               labels: batch_labels})[0]
                    test_acc += metrics.accurracy_np(probs_batch, batch_labels)/steps_per_test

                saver.save(sess, checkpoints_dir + '/cur_model.ckpt')
                summary = sess.run([test_summaries], feed_dict={test_acc_plc: test_acc, train_acc_plc: train_acc})
                for s in summary:
                    test_writer.add_summary(s, global_step.eval())

                epoch_time, start_time = int(time.time() - start_time), time.time()

                print 'epoch_num %3d' % epoch_num,
                print 'train_acc %.3f' % train_acc,
                print 'test_acc %.3f' % test_acc,
                print 'epoch_time %.3f' % epoch_time
def run_experiment(dataset,
                   num_epochs,
                   batch_size,
                   arch,
                   obj,
                   verbose,
                   optpolicy_lr,
                   optpolicy_rw,
                   log_fname=None,
                   params=None,
                   train_clip=False,
                   thresh=3,
                   optimizer='adam',
                   da=False):
    data, train_size, test_size, input_shape, nclass = reader.load(dataset)
    net, input_x, target_y, k = arch(input_shape, nclass)

    if num_epochs == 0:
        return net

    if params is not None:
        ll.set_all_param_values(net, params)

    # Default log file name = experiment script file name
    if log_fname is None:
        log_fname = sys.argv[0].split('/')[-1][:-3]

    if not os.path.exists('./experiments/logs'):
        os.mkdir('./experiments/logs')

    base_fname = './experiments/logs/{fname}-{dataset}-%s.txt'
    print = get_logging_print(
        base_fname.format(dataset=dataset, fname=log_fname))
    print(experiment_info(**locals()))
    print(utils.net_configuration(net, short=(not verbose)))

    print('start compile',
          datetime.datetime.now().isoformat()[:16].replace('T', ' '))
    trainf, testf, predictf, up_opt, up_rw = utils.get_functions(**locals())
    print('finish compile',
          datetime.datetime.now().isoformat()[:16].replace('T', ' '))
    net, tr_info, te_info = utils.train(net,
                                        trainf,
                                        testf,
                                        up_opt,
                                        optpolicy_lr,
                                        up_rw,
                                        optpolicy_rw,
                                        data,
                                        num_epochs,
                                        batch_size,
                                        verbose,
                                        printf=print,
                                        thresh=thresh,
                                        da=da)

    print(save_net(net, dataset, k))
    print(
        utils.test_net(net, testf, data, 'ard'
                       in sys.argv[0].split('/')[-1][:-3]))

    return net
Beispiel #7
0
def run_experiment(dataset,
                   num_epochs,
                   batch_size,
                   arch,
                   criterion,
                   verbose,
                   optpolicy_lr,
                   log_fname,
                   params=None,
                   optimizer='adam',
                   trainset_size=None,
                   p=None,
                   noise_type=None,
                   alpha=None,
                   noise_magnitude=False,
                   magn_var=None,
                   noise_ave_times=0,
                   updates_per_epoch=None):
    train_loader, test_loader, train_size, test_size, input_size, nclass = reader.load(
        dataset, batch_size, trainset_size)

    if noise_type is not None or noise_magnitude:
        net = arch(input_size,
                   nclass,
                   p=p,
                   noise_type=noise_type,
                   alpha=alpha,
                   noise_magnitude=noise_magnitude,
                   magn_var=magn_var)
    else:
        net = arch(input_size, nclass)

    base_fname = './experiments/logs/{fname}-%s.txt'
    print = get_logging_print(base_fname.format(fname=log_fname))
    print(experiment_info(**locals()))
    print(">> Net Architecture")
    print(net)

    if optimizer == 'adam':
        optimizer_fn = optim.Adam(net.parameters())
    else:
        raise Exception('unknown optimizer:', optimizer)

    def up_opt(lr):
        for param_group in optimizer_fn.param_groups:
            param_group['lr'] = lr

    utils.train(net,
                train_loader,
                test_loader,
                train_size,
                num_epochs,
                batch_size,
                nclass,
                criterion,
                optimizer_fn,
                up_opt,
                optpolicy_lr,
                printf=print,
                noise_ave_times=noise_ave_times,
                updates_per_epoch=updates_per_epoch)

    print(save_net(net, dataset, log_fname))
    print(
        utils.test_net(net, train_loader, test_loader, nclass,
                       noise_ave_times))

    return net