Beispiel #1
0
def formatData(lines):

    stock = Stock()

    if len(lines) > 1:

        values = lines[0].split(' ')

        stock.id = values[0]

        i = 1

        while values[i] != '日线':

            stock.name += values[i]

            i += 1

        lines.pop(0)

    if len(lines) <= 1:

        return stock

    for line in lines:

        dayvalue = DayValue()

        values = line.split('\t')

        if getTime(values[0]) < time.strptime('2017/1/01', '%Y/%m/%d'):

            continue

        dayvalue.date = values[0]

        dayvalue.open = float(values[1])

        dayvalue.high = float(values[2])

        dayvalue.low = float(values[3])

        dayvalue.close = float(values[4])

        dayvalue.tradeamount = float(values[5])

        dayvalue.tradevolume = float(values[6])

        stock.dayvalues.append(dayvalue)

    return stock
def getTradeInfoAfter(date, stockname, days) -> [RangeTrend]:

    stock = Stock.fromJson(loadStock(stockname))

    if stock is None:

        return []

    index = 0

    for dayvalue in stock.dayvalues:

        if getTime(dayvalue.date) > date:

            break

        index += 1

    index -= 1

    if index >= len(stock.dayvalues):

        return []

    results = []

    for i in days:

        if index + i < len(stock.dayvalues):

            trend = getRangeTrend(index, i, stock.dayvalues)

            results.append(trend)

    return results
def getCloseAfter(date, stockname, days) -> [int]:

    stock = Stock.fromJson(loadStock(stockname))

    if stock is None:

        return []

    index = 0

    for dayvalue in stock.dayvalues:

        if getTime(dayvalue.date) > date:

            break

        index += 1

    index -= 1

    results = []

    for i in days:

        if index + i < len(stock.dayvalues):

            results.append(100 * (stock.dayvalues[index + i].close -
                                  stock.dayvalues[index].close) /
                           stock.dayvalues[index].close)

        else:

            results.append(0)

    return results
Beispiel #4
0
 def addStock(self, config):
     stock = Stock(config["id"], config["name"], config["area"],
                   config["ex"])
     print("  Stock: " + stock.getFullID() + " " + stock.getName())
     self.stockSet[stock.getFullID()] = stock
     stock.setInfo(config)
     pass
def loadFromDB():

    stocks = []

    client = MongoClient('localhost', 27017)

    db = client["test"]

    coll = db['stocks']

    results = coll.find({}, {'_id': 0})

    for r in results:

        stocks.append(Stock.fromJson(r))

    return stocks
Beispiel #6
0
def loadAllStockFromDB() -> Dict[str, Stock]:
    stocks = dict()

    items = DatabaseMgr.instance().stocks.find({}, {'_id': 0})

    for item in items:

        if 'id' in item:

            print(item['id'])

            stockId = item['id']

            stock = Stock.fromJson(item)

            stock.calcMinsAndMaxs()

            stocks[stockId] = stock

    return stocks
Beispiel #7
0
from data.stock import Stock
from data.storemgr import StockMgr

items = DatabaseMgr.instance().stocks.find({'id': '002807'}, {'_id': 0})

stock = None

for item in items:

    if 'id' in item:

        # print(item['id'])

        stockId = item['id']

        stock = Stock.fromJson(item)

        break

value = stock.findHeighestValue('2017/1/1')

value0 = stock.findLowestValue(value.date)

value1 = stock.findHeighestValue(value0.date)

if value1 is not None:

    if (value1.high - value0.low) / value0.open < 0.15:

        pass
Beispiel #8
0
import sys
from data.stock import Stock
from predictor import Predictor
from score import auc
from preprocess import Preprocess

submission_number = sys.argv[1]
print submission_number 

def submission(ids, preds):
    name = "submissions/submission{0}.csv".format(submission_number)
    f = open(name, 'w')
    if len(ids) != len(preds):
        raise Exception("The number of IDs and the number of predictions are different")
    string = 'id,prediction\n'
    for index,i in enumerate(ids):
        string += str(i) + ',' + str(preds[index]) + "\n"
    f.write(str(string))
    f.close()

data, targets, _ = Stock.train()
holdout_data, ids = Stock.test()
assert len(data) == len(targets)

Predictor.train(data, targets)
preds = Predictor.multi_predict(holdout_data)
print preds[0:50]
submission(ids, preds)
Beispiel #9
0
from data.stock import Stock
from predictor import Predictor
from score import auc
from preprocess import Preprocess

data, targets, cv_targets = Stock.train()

#data = Preprocess.scale(data)
#cv_targets = Preprocess.scale(cv_targets)
#data = Preprocess.polynomial(data, 5)
half = len(data)/2
tr_data, holdout_data = data[:half], data[half:]
train_targets, holdout_targets = targets[:half], targets[half:]

Predictor.train(tr_data, train_targets)
preds = Predictor.multi_predict(holdout_data)
print 'AUC ', auc(preds, cv_targets)
print Predictor.multi_predict([[0.]])
print Predictor.multi_predict([[0.1]])
print Predictor.multi_predict([[-0.1]])
print Predictor.multi_predict([[0.01]])
print Predictor.multi_predict([[-0.01]])
Beispiel #10
0
def test():
    print("Test StockProxySina")
    stock1 = Stock('01810', '小米集团-W', 'hangkong', 'hk')
    stock2 = Stock('002415', '海康威视', 'shenzhen', 'sz')
    sinaproxy = StockProxySina()
    stock1.addProxy(sinaproxy)
    print(stock1.getFullID() + "\tprice:" + str(stock1.getPrice()) + "\t" +
          str(stock1.getPriceDatetime()))
    stock2.addProxy(sinaproxy)
    print(stock2.getFullID() + "\tprice:" + str(stock2.getPrice()) + "\t" +
          str(stock2.getPriceDatetime()))
Beispiel #11
0
from data.stock import Stock

data, targets = Stock.train(categorize=False)

pos, neg = [], []
for delta in targets:
    if delta > 0:
        pos.append(delta)
    elif delta < 0:
        neg.append(delta)

print sum(pos)/len(pos)
print sum(neg)/len(neg)