def save_and_plot_data(data, histogram): #Data processing sync = 2**par_binsize_sync * arange(par_range_sync) / 1e3 #sync axis in ns dt = 2**par_binsize_g2 * linspace(-par_range_g2 / 2, par_range_g2 / 2, par_range_g2) / 1e3 #dt axis in ns X, Y = meshgrid(dt, sync) data.create_file() #plt = qt.Plot3D(data, name='Interference',clear = Truprint 'Optimisation step completed'e, coorddims=(0,1), valdim=1, style='image') #data.add_data_point(ravel(X),ravel(Y),ravel(histogram)) filename = data.get_filepath()[:-4] pqm.savez(filename, dt=dt, sync=sync, counts=histogram) #Plot Data plt = plot3(ravel(X), ravel(Y), ravel(histogram), style='image', palette='hot', title='interference') #data.new_block() plt.set_xlabel('dt [ns]') plt.set_ylabel('delay wrt sync pulse [ns]') plt.save_png(filename) data.close_file() print 'interference, bitch' print '(entanglement expected in 3 weeks)'
def save_and_plot_data(data,histogram): #Data processing sync = 2**par_binsize_sync * arange(par_range_sync) * 1e3 #sync axis in ns dt = 2**par_binsize_g2 * linspace(-par_range_g2/2,par_range_g2/2,par_range_g2)*1e3 #dt axis in ns X,Y = meshgrid(dt, sync) data.create_file() #plt = qt.Plot3D(data, name='Interference',clear = True, coorddims=(0,1), valdim=1, style='image') data.add_data_point(ravel(X),ravel(Y),ravel(histogram)) filename=data.get_filepath()[:-4] pqm.savez(filename,dt=dt,sync=sync, counts=histogram) #Plot Data plt = plot3(ravel(X),ravel(Y),ravel(histogram), style='image',palette='hot', title='interference') #data.new_block() plt.set_xlabel('dt [ns]') plt.set_ylabel('delay wrt sync pulse [ns]') plt.save_png(filename) data.close_file() print 'interference' print '(entanglement expected in 3 weeks)'
def save_and_plot_data(data, histogram, histogram_summed, hist_ch0, hist_ch1, hist_ch1_long, hist_roi, hist_roi_summed): #Data processing adpars_lt1 = adwin_lt1.get_remote_tpqi_control_var('par') adpars_lt2 = adwin_lt2.get_remote_tpqi_control_var('par') sync = 2**(par_binsize_sync + par_binsize_T3) * arange(par_range_sync) / 1e3 #sync axis in ns dt = 2**(par_binsize_g2+par_binsize_T3) * \ linspace(-par_range_g2/2,par_range_g2/2,par_range_g2)/ 1e3 #dt axis in ns data.create_file() max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(7, 1, max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(8, 1, max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(7, 1, max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(8, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 7, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 8, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 7, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 8, 1, max_cts) filename = data.get_filepath()[:-4] pqm.savez(filename, dt=dt, sync=sync, counts=histogram, counts_summed=histogram_summed, hist_ch0=hist_ch0, hist_ch1=hist_ch1, hist_ch1_long=hist_ch1_long, hist_roi=hist_roi, hist_roi_summed=hist_roi_summed, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total, adwin_lt1_pars=adpars_lt1, adwin_lt2_pars=adpars_lt2) #Plot Data do_plot = not (debug_mode) if do_plot: plt = plot(dt, hist_roi) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of coincidences in current cycle') plt.save_png(filename + '.png') plt.clear() plt = plot(dt, hist_roi_summed) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of coincidences in total') plt.save_png(filename + 'total.png') plt.clear() data.close_file()
def save_and_plot_data(data, histogram, histogram_summed, hist_ch0, hist_ch1, hist_ch1_long): #Data processing sync = 2**(par_binsize_sync + par_binsize_T3) * arange(par_range_sync) / 1e3 #sync axis in ns dt = 2**(par_binsize_g2 + par_binsize_T3) * linspace( -par_range_g2 / 2, par_range_g2 / 2, par_range_g2) / 1e3 #dt axis in ns X, Y = meshgrid(dt, sync) data.create_file() #plt = qt.Plot3D(data, name='Interference',clear = Truprint 'Optimisation step completed'e, coorddims=(0,1), valdim=1, style='image') #data.add_data_point(ravel(X),ravel(Y),ravel(histogram)) max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(71, 1, max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(72, 1, max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(71, 1, max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(72, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 71, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 72, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 71, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 72, 1, max_cts) filename = data.get_filepath()[:-4] pqm.savez(filename, dt=dt, sync=sync, counts=histogram, counts_summed=histogram_summed, hist_ch0=hist_ch0, hist_ch1=hist_ch1, hist_ch1_long=hist_ch1_long, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total) #Plot Data do_plot = False if do_plot: plt = plot3(ravel(X), ravel(Y), ravel(histogram), style='image', palette='hot', title='interference') data.new_block() plt.set_xlabel('dt [ns]') plt.set_ylabel('delay wrt sync pulse [ns]') plt.save_png(filename) data.close_file() print 'interference, bitch' print '(entanglement expected in 3 weeks)'
def save_and_plot_data(data,histogram,histogram_summed, hist_ch0,hist_ch1,hist_ch1_long,hist_roi,hist_roi_summed): #Data processing adpars_lt1 = adwin_lt1.get_remote_tpqi_control_var('par') adpars_lt2 = adwin_lt2.get_remote_tpqi_control_var('par') sync = 2**(par_binsize_sync+par_binsize_T3) * arange(par_range_sync) / 1e3 #sync axis in ns dt = 2**(par_binsize_g2+par_binsize_T3) * \ linspace(-par_range_g2/2,par_range_g2/2,par_range_g2)/ 1e3 #dt axis in ns data.create_file() max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(7,1,max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(8,1,max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(7,1,max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(8,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),7,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),8,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),7,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),8,1,max_cts) filename=data.get_filepath()[:-4] pqm.savez(filename, dt=dt, sync=sync, counts=histogram, counts_summed = histogram_summed, hist_ch0=hist_ch0, hist_ch1=hist_ch1, hist_ch1_long=hist_ch1_long, hist_roi = hist_roi, hist_roi_summed = hist_roi_summed, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total, adwin_lt1_pars = adpars_lt1, adwin_lt2_pars = adpars_lt2) #Plot Data do_plot=not(debug_mode) if do_plot: plt = plot(dt,hist_roi) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of coincidences in current cycle') plt.save_png(filename+'.png') plt.clear() plt = plot(dt,hist_roi_summed) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of coincidences in total') plt.save_png(filename+'total.png') plt.clear() data.close_file()
def save_and_plot_data(data,histogram,histogram_summed,hist_ch0,hist_ch1,hist_ch1_long,hist_roi,hist_roi_summed): #Data processing sync = 2**(par_binsize_sync+par_binsize_T3) * arange(par_range_sync) / 1e3 #sync axis in ns dt = 2**(par_binsize_g2+par_binsize_T3) * linspace(-par_range_g2/2,par_range_g2/2,par_range_g2)/ 1e3 #dt axis in ns #X,Y = meshgrid(dt, sync) data.create_file() #plt = qt.Plot3D(data, name='Interference',clear = Truprint 'Optimisation step completed'e, coorddims=(0,1), valdim=1, style='image') #data.add_data_point(ravel(X),ravel(Y),ravel(histogram)) max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(7,1,max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(8,1,max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(7,1,max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(8,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),7,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),8,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),7,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),8,1,max_cts) filename=data.get_filepath()[:-4] pqm.savez(filename, dt=dt, sync=sync, counts=histogram, counts_summed = histogram_summed, hist_ch0=hist_ch0, hist_ch1=hist_ch1, hist_ch1_long=hist_ch1_long, hist_roi = hist_roi, hist_roi_summed = hist_roi_summed, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total) #Plot Data do_plot=not(debug_mode) if do_plot: plt = plot(dt,hist_roi) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of coincidences in current cycle') plt.save_png(filename+'.png') plt.clear() plt = plot(dt,hist_roi_summed) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of coincidences in total') plt.save_png(filename+'total.png') plt.clear() data.close_file() print 'interference, bitch' print '(entanglement expected in 3 weeks)'
def save_and_plot_data(data, hist_ch0, hist_ch1, gated_ch0, gated_ch1, gated_ch0_summed, gated_ch1_summed): #Data processing dt = 2**(par_binsize_T3) * arange(0, par_range_g2) / 1e3 #dt axis in ns #X,Y = meshgrid(dt, sync) data.create_file() max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(7, 1, max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(8, 1, max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(7, 1, max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(8, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 7, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 8, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 7, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 8, 1, max_cts) filename = data.get_filepath()[:-4] pqm.savez(filename, dt=dt, hist_ch0=hist_ch0, hist_ch1=hist_ch1, gated_ch0=gated_ch0, gated_ch1=gated_ch1, gated_ch0_summed=gated_ch0_summed, gated_ch1_summed=gated_ch1_summed, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total) #Plot Data do_plot = not (debug_mode) if do_plot: plt = plot(dt, gated_ch0, name='plu_ch0', clear=True) plt.add(dt, hist_ch0) plt.set_ylog(True) plt.set_xrange(25, 130) plt.set_xlabel('dt [ns]') plt.set_ylabel('Gated histogram ch0') plt.save_png(filename + '_gated_ch0.png') plt = plot(dt, gated_ch1, name='plu_ch1', clear=True) plt.add(dt, hist_ch1) plt.set_ylog(True) plt.set_xrange(25, 130) plt.set_xlabel('dt [ns]') plt.set_ylabel('Gated histogram ch1') plt.save_png(filename + '_gated_ch1.png') data.close_file()
def save_and_plot_data(data,hist_ch0,hist_ch1,gated_ch0,gated_ch1,gated_ch0_summed,gated_ch1_summed ): #Data processing dt = 2**(par_binsize_T3) * arange(0,par_range_g2)/ 1e3 #dt axis in ns #X,Y = meshgrid(dt, sync) data.create_file() max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(7,1,max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(8,1,max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(7,1,max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(8,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),7,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),8,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),7,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),8,1,max_cts) filename=data.get_filepath()[:-4] pqm.savez(filename, dt=dt, hist_ch0=hist_ch0, hist_ch1=hist_ch1, gated_ch0=gated_ch0, gated_ch1=gated_ch1, gated_ch0_summed=gated_ch0_summed, gated_ch1_summed=gated_ch1_summed, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total) #Plot Data do_plot=not(debug_mode) if do_plot: plt = plot(dt,gated_ch0, name='plu_ch0', clear=True) plt.add(dt,hist_ch0) plt.set_ylog(True) plt.set_xrange(25,130) plt.set_xlabel('dt [ns]') plt.set_ylabel('Gated histogram ch0') plt.save_png(filename+'_gated_ch0.png') plt = plot(dt,gated_ch1, name='plu_ch1', clear=True) plt.add(dt,hist_ch1) plt.set_ylog(True) plt.set_xrange(25,130) plt.set_xlabel('dt [ns]') plt.set_ylabel('Gated histogram ch1') plt.save_png(filename+'_gated_ch1.png') data.close_file()
def save_data(): mw_pulse_length = length counts_during_repump = physical_adwin.Get_Data_Long(27,0, nr_of_datapoints+1) data.create_file() filename=data.get_filepath()[:-4] pqm.savez(filename, repetitions_per_datapoint = repetitions_per_datapoint, mw_pulse_length = length, counts_during_repump = counts_during_repump,) data.close_file() print 'Data saved'
def save_and_plot_data(data,histogram,histogram_summed,hist_ch0,hist_ch1,hist_ch1_long): #Data processing sync = 2**(par_binsize_sync+par_binsize_T3) * arange(par_range_sync) / 1e3 #sync axis in ns dt = 2**(par_binsize_g2+par_binsize_T3) * linspace(-par_range_g2/2,par_range_g2/2,par_range_g2)/ 1e3 #dt axis in ns X,Y = meshgrid(dt, sync) data.create_file() #plt = qt.Plot3D(data, name='Interference',clear = Truprint 'Optimisation step completed'e, coorddims=(0,1), valdim=1, style='image') #data.add_data_point(ravel(X),ravel(Y),ravel(histogram)) max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(71,1,max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(72,1,max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(71,1,max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(72,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),71,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),72,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),71,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),72,1,max_cts) filename=data.get_filepath()[:-4] pqm.savez(filename, dt=dt, sync=sync, counts=histogram, counts_summed = histogram_summed, hist_ch0=hist_ch0, hist_ch1=hist_ch1, hist_ch1_long=hist_ch1_long, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total) #Plot Data do_plot=False if do_plot: plt = plot3(ravel(X),ravel(Y),ravel(histogram), style='image',palette='hot', title='interference') data.new_block() plt.set_xlabel('dt [ns]') plt.set_ylabel('delay wrt sync pulse [ns]') plt.save_png(filename) data.close_file() print 'interference, bitch' print '(entanglement expected in 3 weeks)'
def save_data(): mw_pulse_length = length counts_during_repump = physical_adwin.Get_Data_Long( 27, 0, nr_of_datapoints + 1) data.create_file() filename = data.get_filepath()[:-4] pqm.savez( filename, repetitions_per_datapoint=repetitions_per_datapoint, mw_pulse_length=length, counts_during_repump=counts_during_repump, ) data.close_file() print 'Data saved'
def save_data(): data = qt.Data(name='spin_control') data.add_coordinate('mw_pulse_length') data.add_value('counts_during_readout') mw_pulse_length = length counts_during_readout = physical_adwin.Get_Data_Long(27,1, nr_of_datapoints) data.create_file() filename=data.get_filepath()[:-4] pqm.savez(filename, repetitions_per_datapoint = repetitions_per_datapoint, mw_pulse_length = length, counts_during_readout = counts_during_readout) data.close_file() print 'Data saved'
def save_and_plot_data(data, histogram, histogram_summed): #Data processing dt = linspace(0, 16777.216, 65536) data.create_file() max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(71, 1, max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(72, 1, max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(71, 1, max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(72, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 71, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 72, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 71, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 72, 1, max_cts) filename = data.get_filepath()[:-4] pqm.savez(filename, dt=dt, counts=histogram, counts_summed=histogram_summed, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total) #Plot Data do_plot = True if do_plot: plt = plot(dt[0:2000], histogram[0:2000]) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of events in 20 min') plt.save_png(filename) plt.clear() plt = plot(dt[0:2000], histogram_summed[0:2000]) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of events in total') plt.save_png(filename + 'total') plt.clear() data.close_file() print 'interference, bitch' print '(entanglement expected in 3 weeks)'
def save_and_plot_data(data,histogram,histogram_summed): #Data processing dt = linspace(0,16777.216,65536) data.create_file() max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(71,1,max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(72,1,max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(71,1,max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(72,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),71,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),72,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),71,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),72,1,max_cts) filename=data.get_filepath()[:-4] pqm.savez(filename, dt=dt, counts=histogram, counts_summed = histogram_summed, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total) #Plot Data do_plot=True if do_plot: plt = plot(dt[0:2000],histogram[0:2000]) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of events in 20 min') plt.save_png(filename) plt.clear() plt = plot(dt[0:2000],histogram_summed[0:2000]) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of events in total') plt.save_png(filename+'total') plt.clear() data.close_file() print 'interference, bitch' print '(entanglement expected in 3 weeks)'
def save_and_plot_data(data): # Data processing data.create_file() max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(7, 1, max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(8, 1, max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(7, 1, max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(8, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 7, 1, max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts, dtype=int32), 8, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 7, 1, max_cts) physical_adwin.Set_Data_Long(zeros(max_cts, dtype=int32), 8, 1, max_cts) filename = data.get_filepath()[:-4] pqm.savez( filename, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total, ) # Plot Data do_plot = not (debug_mode) if do_plot: plt = plot(dt, hist_roi) plt.set_xlabel("dt [ns]") plt.set_ylabel("number of coincidences in current cycle") plt.save_png(filename + ".png") plt.clear() plt = plot(dt, hist_roi_summed) plt.set_xlabel("dt [ns]") plt.set_ylabel("number of coincidences in total") plt.save_png(filename + "total.png") plt.clear() data.close_file()
def save_and_plot_data(data): #Data processing data.create_file() max_cts = 100 cr_hist_LT1_first = physical_adwin_lt1.Get_Data_Long(7,1,max_cts) cr_hist_LT1_total = physical_adwin_lt1.Get_Data_Long(8,1,max_cts) cr_hist_LT2_first = physical_adwin.Get_Data_Long(7,1,max_cts) cr_hist_LT2_total = physical_adwin.Get_Data_Long(8,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),7,1,max_cts) physical_adwin_lt1.Set_Data_Long(zeros(max_cts,dtype=int32),8,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),7,1,max_cts) physical_adwin.Set_Data_Long(zeros(max_cts,dtype=int32),8,1,max_cts) filename=data.get_filepath()[:-4] pqm.savez(filename, cr_hist_LT1_first=cr_hist_LT1_first, cr_hist_LT1_total=cr_hist_LT1_total, cr_hist_LT2_first=cr_hist_LT2_first, cr_hist_LT2_total=cr_hist_LT2_total) #Plot Data do_plot=not(debug_mode) if do_plot: plt = plot(dt,hist_roi) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of coincidences in current cycle') plt.save_png(filename+'.png') plt.clear() plt = plot(dt,hist_roi_summed) plt.set_xlabel('dt [ns]') plt.set_ylabel('number of coincidences in total') plt.save_png(filename+'total.png') plt.clear() data.close_file()