Beispiel #1
0
def load_characters(neighbours, blur_scale, verbose=0):
    chars_file = 'characters_%s_%s.dat' % (blur_scale, neighbours)

    if exists(chars_file):
        print 'Loading characters...'
        chars = fload(chars_file)
    else:
        print 'Going to generate character objects...'
        chars = []

        for char in sorted(listdir(IMAGES_FOLDER)):
            count = 0

            for image in sorted(listdir(IMAGES_FOLDER + char)):
                image = GrayscaleImage(IMAGES_FOLDER + char + '/' + image)
                norm = NormalizedCharacterImage(image, blur=blur_scale, \
                                                height=NORMALIZED_HEIGHT)
                character = Character(char, [], norm)
                character.get_single_cell_feature_vector(neighbours)
                chars.append(character)

                count += 1

                if verbose:
                    print 'Loaded character %s %d times' % (char, count)

        if verbose:
            print 'Saving characters...'

        fdump(chars, chars_file)

    return chars
Beispiel #2
0
def load_test_set(neighbours, blur_scale, verbose=0):
    test_set_file = 'test_set_%s_%s.dat' % (blur_scale, neighbours)

    if exists(test_set_file):
        if verbose:
            print 'Loading test set...'

        test_set = fload(test_set_file)

        if verbose:
            print 'Test set:', [c.value for c in test_set]
    else:
        test_set = generate_sets(neighbours, blur_scale, verbose=verbose)[1]

    return test_set
Beispiel #3
0
def load_learning_set(neighbours, blur_scale, verbose=0):
    learning_set_file = 'learning_set_%s_%s.dat' % (blur_scale, neighbours)

    if exists(learning_set_file):
        if verbose:
            print 'Loading learning set...'

        learning_set = fload(learning_set_file)

        if verbose:
            print 'Learning set:', [c.value for c in learning_set]
    else:
        learning_set = generate_sets(neighbours, blur_scale, \
                verbose=verbose)[0]

    return learning_set