def run(dataset, net_type): # Hyper Parameter settings layer_type = cfg.layer_type activation_type = cfg.activation_type train_ens = cfg.train_ens valid_ens = cfg.valid_ens n_epochs = cfg.n_epochs lr_start = cfg.lr_start num_workers = cfg.num_workers valid_size = cfg.valid_size batch_size = cfg.batch_size beta_type = cfg.beta_type trainset, testset, inputs, outputs = data.getDataset(dataset) train_loader, valid_loader, test_loader = data.getDataloader( trainset, testset, valid_size, batch_size, num_workers) net = getModel(net_type, inputs, outputs, layer_type, activation_type).to(device) ckpt_dir = f'checkpoints/{dataset}/bayesian' ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}.pt' if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir, exist_ok=True) criterion = metrics.ELBO(len(trainset)).to(device) optimizer = Adam(net.parameters(), lr=lr_start) lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True) valid_loss_max = np.Inf for epoch in range(n_epochs): # loop over the dataset multiple times cfg.curr_epoch_no = epoch train_loss, train_acc, train_kl = train_model(net, optimizer, criterion, train_loader, num_ens=train_ens, beta_type=beta_type) valid_loss, valid_acc = validate_model(net, criterion, valid_loader, num_ens=valid_ens) lr_sched.step(valid_loss) print( 'Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy: {:.4f} \ttrain_kl_div: {:.4f}' .format(epoch, train_loss, train_acc, valid_loss, valid_acc, train_kl)) # save model if validation accuracy has increased if valid_loss <= valid_loss_max: print( 'Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...' .format(valid_loss_max, valid_loss)) torch.save(net.state_dict(), ckpt_name) valid_loss_max = valid_loss
def run(dataset, net_type, train=True): # Hyper Parameter settings train_ens = cfg.train_ens valid_ens = cfg.valid_ens test_ens = cfg.test_ens n_epochs = cfg.n_epochs lr_start = cfg.lr_start num_workers = cfg.num_workers valid_size = cfg.valid_size batch_size = cfg.batch_size trainset, testset, inputs, outputs = data.getDataset_regression(dataset) train_loader, valid_loader, test_loader = data.getDataloader( trainset, testset, valid_size, batch_size, num_workers) net = getModel(net_type, inputs, outputs).to(device) print(len(train_loader)) print(len(valid_loader)) print(len(test_loader)) ckpt_dir = f'checkpoints/regression/{dataset}/bayesian' ckpt_name = f'checkpoints/regression/{dataset}/bayesian/model_{net_type}.pt' if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir, exist_ok=True) criterion = metrics.ELBO_regression_hetero(len(trainset)).to(device) if train: optimizer = Adam(net.parameters(), lr=lr_start) valid_loss_max = np.Inf for epoch in range(n_epochs): # loop over the dataset multiple times cfg.curr_epoch_no = epoch utils.adjust_learning_rate(optimizer, metrics.lr_linear(epoch, 0, n_epochs, lr_start)) train_loss, train_mse, train_kl = train_model(net, optimizer, criterion, train_loader, num_ens=train_ens) valid_loss, valid_mse = validate_model(net, criterion, valid_loader, num_ens=valid_ens) print('Epoch: {} \tTraining Loss: {:.4f} \tTraining MSE: {:.4f} \tValidation Loss: {:.4f} \tValidation MSE: {:.4f} \ttrain_kl_div: {:.4f}'.format( epoch, train_loss, train_mse, valid_loss, valid_mse, train_kl)) # save model if validation MSE has increased if valid_loss <= valid_loss_max: print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_max, valid_loss)) torch.save(net.state_dict(), ckpt_name) valid_loss_max = valid_loss # test saved model best_model = getModel(net_type, inputs, outputs).to(device) best_model.load_state_dict(torch.load(ckpt_name)) test_loss, test_mse = test_model(best_model, criterion, test_loader, num_ens=test_ens) print('Test Loss: {:.4f} \tTest MSE: {:.4f} '.format( test_loss, test_mse)) test_uncertainty(best_model, testset[:100], data='ccpp')
def get_splitmnist_dataloaders(num_tasks, return_datasets=False): loaders = [] datasets = _get_splitmnist_datasets(num_tasks) for i in range(1, num_tasks + 1): trainset, testset, _, _ = datasets[i-1] curr_loaders = data.getDataloader( trainset, testset, cfg.valid_size, cfg.batch_size, cfg.num_workers) loaders.append(curr_loaders) # (train_loader, valid_loader, test_loader) if return_datasets: return loaders, datasets return loaders
def run(dataset, net_type): # Hyper Parameter settings n_epochs = cfg.n_epochs lr = cfg.lr num_workers = cfg.num_workers valid_size = cfg.valid_size batch_size = cfg.batch_size trainset, testset, inputs, outputs = data.getDataset(dataset) train_loader, valid_loader, test_loader = data.getDataloader( trainset, testset, valid_size, batch_size, num_workers) net = getModel(net_type, inputs, outputs).to(device) ckpt_dir = f'checkpoints/{dataset}/frequentist' ckpt_name = f'checkpoints/{dataset}/frequentist/model_{net_type}.pt' if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir, exist_ok=True) criterion = nn.CrossEntropyLoss() optimizer = Adam(net.parameters(), lr=lr) lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True) valid_loss_min = np.Inf for epoch in range(1, n_epochs + 1): train_loss, train_acc = train_model(net, optimizer, criterion, train_loader) valid_loss, valid_acc = validate_model(net, criterion, valid_loader) lr_sched.step(valid_loss) train_loss = train_loss / len(train_loader.dataset) valid_loss = valid_loss / len(valid_loader.dataset) print( 'Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy: {:.4f}' .format(epoch, train_loss, train_acc, valid_loss, valid_acc)) # save model if validation loss has decreased if valid_loss <= valid_loss_min: print( 'Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...' .format(valid_loss_min, valid_loss)) torch.save(net.state_dict(), ckpt_name) valid_loss_min = valid_loss
def test(): network.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = network(data) test_loss += F.nll_loss(output, target, size_average=False).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) if __name__ == "__main__": train_set, test_set, inputs, num_classes = data.getDataset() train_loader, valid_loader, test_loader = data.getDataloader( train_set, test_set, param.valid_size, param.batch_size_train, param.batch_size_test, param.num_workers) network = Net() optimizer = optim.SGD(network.parameters(), lr=param.learning_rate, momentum=param.momentum) test() for epoch in range(1, param.n_epochs + 1): train(epoch) test()
def run(dataset, net_type, train=True): # Hyper Parameter settings train_ens = cfg.train_ens valid_ens = cfg.valid_ens test_ens = cfg.test_ens n_epochs = cfg.n_epochs lr_start = cfg.lr_start num_workers = cfg.num_workers valid_size = cfg.valid_size batch_size = cfg.batch_size trainset, testset, inputs, outputs = data.getDataset_regression(dataset) train_loader, valid_loader, test_loader = data.getDataloader( trainset, testset, valid_size, batch_size, num_workers) net = getModel(net_type, inputs, outputs).to(device) print(len(train_loader)) print(len(valid_loader)) print(len(test_loader)) ckpt_dir = f'checkpoints/regression/{dataset}/' + name ckpt_name = f'checkpoints/regression/{dataset}/'+ name + '/model_{net_type}.pt' if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir, exist_ok=True) criterion = metrics.ELBO_regression(len(trainset)).to(device) # criterion = metrics.ELBO_regression(len(train_loader)).to(device) kl_cost_train = np.zeros(n_epochs) pred_cost_train = np.zeros(n_epochs) mse_train = np.zeros(n_epochs) kl_cost_val = np.zeros(n_epochs) pred_cost_val = np.zeros(n_epochs) mse_val = np.zeros(n_epochs) if train: optimizer = Adam(net.parameters(), lr=lr_start) valid_loss_max = np.Inf for epoch in range(n_epochs): # loop over the dataset multiple times cfg.curr_epoch_no = epoch utils.adjust_learning_rate(optimizer, metrics.lr_linear(epoch, 0, n_epochs, lr_start)) train_loss, train_mse, train_kl, train_pred = train_model(net, optimizer, criterion, train_loader, num_ens=train_ens) valid_loss, valid_mse, valid_kl, valid_pred = validate_model(net, criterion, valid_loader, num_ens=valid_ens) kl_cost_train[epoch] = train_kl pred_cost_train[epoch] = train_pred mse_train[epoch] = train_mse kl_cost_val[epoch] = valid_kl pred_cost_val[epoch] = valid_pred mse_val[epoch] = valid_mse print('Epoch: {} \ttra loss: {:.4f} \ttra_kl: {:.4f} \ttra_pred: {:.4f} \ttra MSE: {:.4f} \nval loss: {:.4f} \tVal kl: {:.4f} \tval_pred: {:.4f} \tval MSE: {:.4f} ' .format( epoch, train_loss, train_kl, train_pred, train_mse, valid_loss, valid_kl, valid_pred, valid_mse)) # save model if validation MSE has increased if valid_loss <= valid_loss_max: print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( valid_loss_max, valid_loss)) torch.save(net.state_dict(), ckpt_name) valid_loss_max = valid_loss # fig cost vs its textsize = 15 marker = 5 plt.figure(dpi=100) fig, ax1 = plt.subplots() ax1.plot(pred_cost_train[20:], 'r--') ax1.plot(pred_cost_val[20:], 'b-') ax1.set_ylabel('Pred_loss') plt.xlabel('epoch') plt.grid(b=True, which='major', color='k', linestyle='-') plt.grid(b=True, which='minor', color='k', linestyle='--') lgd = plt.legend(['train error', 'test error'], markerscale=marker, prop={'size': textsize, 'weight': 'normal'}) ax = plt.gca() plt.title('Regression costs') for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(textsize) item.set_weight('normal') plt.savefig(ckpt_dir + '/pred_cost.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.figure() fig, ax1 = plt.subplots() ax1.plot(kl_cost_train, 'r') ax1.plot(kl_cost_val, 'b') ax1.set_ylabel('nats?') plt.xlabel('epoch') plt.grid(b=True, which='major', color='k', linestyle='-') plt.grid(b=True, which='minor', color='k', linestyle='--') ax = plt.gca() plt.title('DKL (per sample)') for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(textsize) item.set_weight('normal') plt.savefig(ckpt_dir + '/KL_cost.png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.figure(dpi=100) fig2, ax2 = plt.subplots() ax2.set_ylabel('% error') ax2.plot(mse_val[20:], 'b-') ax2.plot(mse_train[20:], 'r--') plt.xlabel('epoch') plt.grid(b=True, which='major', color='k', linestyle='-') plt.grid(b=True, which='minor', color='k', linestyle='--') ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.ScalarFormatter()) ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) lgd = plt.legend(['val mse', 'train mse'], markerscale=marker, prop={'size': textsize, 'weight': 'normal'}) ax = plt.gca() for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(textsize) item.set_weight('normal') plt.savefig(ckpt_dir + '/mse.png', bbox_extra_artists=(lgd,), box_inches='tight') # test saved model best_model = getModel(net_type, inputs, outputs).to(device) best_model.load_state_dict(torch.load(ckpt_name)) test_loss, test_mse = test_model(best_model, criterion, test_loader, num_ens=test_ens) print('Test Loss: {:.4f} \tTest MSE: {:.4f} '.format( test_loss, test_mse)) test_uncertainty(best_model, testset[:500], data='uci_har')
def run(dataset, net_type, checkpoint='None', prune_criterion='EmptyCrit', pruning_limit=0.0, lower_limit=0.5, local_pruning=False): # Hyper Parameter settings layer_type = cfg.layer_type activation_type = cfg.activation_type priors = cfg.priors train_ens = cfg.train_ens valid_ens = cfg.valid_ens n_epochs = cfg.n_epochs lr_start = cfg.lr_start num_workers = cfg.num_workers valid_size = cfg.valid_size batch_size = cfg.batch_size beta_type = cfg.beta_type # LOAD STRUCTURED PRUNED MODEL if net_type == 'customconv6': import pickle with open('/nfs/homedirs/ayle/model_conv6_0.5.pickle', 'rb') as f: pre_pruned_model = pickle.load(f) else: pre_pruned_model = None trainset, testset, inputs, outputs = data.getDataset(dataset) train_loader, valid_loader, test_loader = data.getDataloader( trainset, testset, valid_size, batch_size, num_workers) net = getModel(net_type, inputs, outputs, priors, layer_type, activation_type, pre_pruned_model).to(device) # LOAD PRUNED UNSTRUCTURED MASK # import pickle # with open('/nfs/homedirs/ayle/mask.pickle', 'rb') as f: # mask = pickle.load(f) # # mask_keys = list(mask.keys()) # # count = 0 # for name, module in net.named_modules(): # if name.startswith('conv') or name.startswith('fc'): # module.mask = mask[mask_keys[count]] # count += 1 # print(module.mask.sum().float() / torch.numel(module.mask)) ckpt_dir = f'checkpoints/{dataset}/bayesian' ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}_{activation_type}_{prune_criterion}_{pruning_limit}_after.pt' if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir, exist_ok=True) if checkpoint != 'None': net.load_state_dict(torch.load(checkpoint)) if layer_type == 'mgp': criterion = metrics.ELBO2(len(trainset)).to(device) else: criterion = metrics.ELBO(len(trainset)).to(device) optimizer = Adam(net.parameters(), lr=lr_start) lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True) valid_loss_max = np.Inf if prune_criterion == 'SNIPit': pruning_criterion = SNIPit(limit=pruning_limit, model=net, lower_limit=lower_limit) pruning_criterion.prune(pruning_limit, train_loader=train_loader, local=local_pruning) elif prune_criterion == 'SNR': pruning_criterion = SNR(limit=pruning_limit, model=net, lower_limit=lower_limit) pruning_criterion.prune(pruning_limit, train_loader=train_loader, local=local_pruning) elif prune_criterion == 'StructuredSNR': pruning_criterion = StructuredSNR(limit=pruning_limit, model=net, lower_limit=lower_limit) # pruning_criterion.prune(pruning_limit, train_loader=train_loader, local=local_pruning) init_num_params = sum([ np.prod(x.shape) for name, x in net.named_parameters() if "W_mu" in name ]) new_num_params = init_num_params for epoch in range(n_epochs): # loop over the dataset multiple times train_loss, train_acc, train_kl = train_model(net, optimizer, criterion, train_loader, num_ens=train_ens, beta_type=beta_type, epoch=epoch, num_epochs=n_epochs, layer_type=layer_type) valid_loss, valid_acc, _ = validate_model(net, criterion, valid_loader, num_ens=valid_ens, beta_type=beta_type, epoch=epoch, num_epochs=n_epochs, layer_type=layer_type) lr_sched.step(valid_loss) print( 'Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy: {:.4f} \ttrain_kl_div: {:.4f}' .format(epoch, train_loss, train_acc, valid_loss, valid_acc, train_kl)) # save model if validation accuracy has increased if valid_loss <= valid_loss_max: print( 'Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...' .format(valid_loss_max, valid_loss)) torch.save(net.state_dict(), ckpt_name) valid_loss_max = valid_loss # if epoch == 0 or epoch == 1: # if (epoch % 40 == 0) and (epoch > 1) and (epoch < 200) and (1 - new_num_params / init_num_params) < pruning_limit: # net.zero_grad() # optimizer.zero_grad() # # with torch.no_grad(): # pruning_criterion.prune(0.1, train_loader=train_loader, local=local_pruning) # # import pickle # with open('testt', 'wb') as f: # pickle.dump(net, f) # # with open('testt', 'rb') as f: # net = pickle.load(f).to(device) # # net.post_init_implementation() # criterion = metrics.ELBO(len(trainset)).to(device) # optimizer = Adam(net.parameters(), lr=lr_start) # lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True) # valid_loss_max = np.Inf # pruning_criterion = StructuredSNR(limit=pruning_limit, model=net, lower_limit=lower_limit) # # new_num_params = sum([np.prod(x.shape) for name, x in net.named_parameters() if "W_mu" in name]) # print('Overall sparsity', 1 - new_num_params / init_num_params) # import pickle # with open(ckpt_name, 'wb') as f: # pickle.dump(net, f) torch.save(net.state_dict(), ckpt_name)