Beispiel #1
0
def cSTrecur_depth2_CF(imageInput, p, STlayerN, dimShape, stddev, params):
    [STconv1dim] = dimShape
    STconv1fcDim = (params.H - 8) * (params.W - 8) * STconv1dim
    with tf.name_scope("cSTrecur"):
        with tf.variable_scope("conv1"):
            weight1, bias1 = createVariable([9, 9, 1, STconv1dim], stddev)
        with tf.variable_scope("fc2"):
            weight2, bias2 = createVariable([STconv1fcDim, params.pDim], 0,
                                            True)
    for l in range(STlayerN):
        with tf.name_scope("cSTrecur{0}".format(l)):
            warpMtrx = warp.vec2mtrxBatch(p, params)
            ImWarp = data.imageWarpIm(imageInput, warpMtrx, params)
            makeImageSummary("imageST{0}".format(l), ImWarp, params)
            with tf.variable_scope("conv1"):
                STconv1 = tf.nn.conv2d(
                    ImWarp, weight1, strides=[1, 1, 1, 1
                                              ], padding="VALID") + bias1
                STrelu1 = tf.nn.relu(STconv1)
            STrelu1vec = tf.reshape(STrelu1, [-1, STconv1fcDim])
            with tf.variable_scope("fc2"):
                STfc2 = tf.matmul(STrelu1vec, weight2) + bias2
            p = warp.compose(p, STfc2, params)
    warpMtrx = warp.vec2mtrxBatch(p, params)
    ImWarp = data.imageWarpIm(imageInput, warpMtrx, params)
    makeImageSummary("imageST{0}".format(STlayerN), ImWarp, params)
    return ImWarp, p
def cSTrecur_depth4_CCFF(imageInput, p, STlayerN, dimShape, stddev, params):
    [STconv1dim, STconv2dim, STfc3dim] = dimShape
    STconv2fcDim = (params.H - 12) // 2 * (params.W - 12) // 2 * STconv2dim
    with tf.name_scope("cSTrecur"):
        with tf.variable_scope("conv1"):
            weight1, bias1 = createVariable([7, 7, 1, STconv1dim], stddev)
        with tf.variable_scope("conv2"):
            weight2, bias2 = createVariable([7, 7, STconv1dim, STconv2dim],
                                            stddev)
        with tf.variable_scope("fc3"):
            weight3, bias3 = createVariable([STconv2fcDim, STfc3dim], stddev)
        with tf.variable_scope("fc4"):
            weight4, bias4 = createVariable([STfc3dim, params.pDim], 0, True)
        ImWarp = imageInput
    k = 1
    for l in range(STlayerN):
        with tf.name_scope("cSTrecur{0}".format(l)):
            with tf.variable_scope("conv1"):
                STconv1 = tf.nn.conv2d(
                    ImWarp, weight1, strides=[1, 1, 1, 1
                                              ], padding="VALID") + bias1
                STrelu1 = tf.nn.relu(STconv1)
            with tf.variable_scope("conv2"):
                STconv2 = tf.nn.conv2d(
                    STrelu1, weight2, strides=[1, 1, 1, 1
                                               ], padding="VALID") + bias2
                STrelu2 = tf.nn.relu(STconv2)
                STmaxpool2 = tf.nn.max_pool(STrelu2,
                                            ksize=[1, 2, 2, 1],
                                            strides=[1, 2, 2, 1],
                                            padding="VALID")
            STmaxpool2vec = tf.reshape(STmaxpool2, [-1, STconv2fcDim])
            with tf.variable_scope("fc3"):
                STfc3 = tf.matmul(STmaxpool2vec, weight3) + bias3
                STrelu3 = tf.nn.relu(STfc3)
            with tf.variable_scope("fc4"):
                STfc4 = tf.matmul(STrelu3, weight4) + bias4
            if k == 1:
                p = STfc4
            else:
                p = warp.compose(p, STfc4, params)
            k = k + 1
            warpMtrx = warp.vec2mtrxBatch(p, params)
            ImWarp = data.imageWarpIm(imageInput, warpMtrx, params)
            makeImageSummary("imageST{0}".format(l), ImWarp, params)
    warpMtrx = warp.vec2mtrxBatch(p, params)
    ImWarp = data.imageWarpIm(imageInput, warpMtrx, params)
    makeImageSummary("imageST{0}".format(STlayerN), ImWarp, params)
    return ImWarp, p
Beispiel #3
0
def cST_depth1_F(imageInput, p, STlayerN, dimShape, stddev, params):
    for l in range(STlayerN):
        with tf.name_scope("cST{0}".format(l)):
            warpMtrx = warp.vec2mtrxBatch(p, params)
            ImWarp = data.imageWarpIm(imageInput, warpMtrx, params)
            makeImageSummary("imageST{0}".format(l), ImWarp, params)
            imageWarpVec = tf.reshape(ImWarp, [-1, params.H * params.W])
            with tf.variable_scope("fc1"):
                weight, bias = createVariable(
                    [params.H * params.W, params.pDim], 0, True)
                STfc1 = tf.matmul(imageWarpVec, weight) + bias
            p = warp.compose(p, STfc1, params)
    warpMtrx = warp.vec2mtrxBatch(p, params)
    ImWarp = data.imageWarpIm(imageInput, warpMtrx, params)
    makeImageSummary("imageST{0}".format(STlayerN), ImWarp, params)
    return ImWarp, p
Beispiel #4
0
def cSTN(opt, imageInput, p, STlayerN, dimShape, stddev):
    for l in range(STlayerN):
        with tf.name_scope("cST{0}".format(l)):
            warpMtrx = warp.vec2mtrxBatch(p, opt)
            ImWarp = data.imageWarpIm(imageInput, warpMtrx, opt)
            util.makeImageSummary("imageST{0}".format(l), ImWarp, opt)
            [STconv1dim, STconv2dim, STfc3dim] = dimShape
            STconv2fcDim = (opt.H - 12) // 2 * (opt.W - 12) // 2 * STconv2dim
            with tf.variable_scope("conv1"):
                weight, bias = createVariable([7, 7, 1, STconv1dim], stddev)
                STconv1 = tf.nn.conv2d(
                    ImWarp, weight, strides=[1, 1, 1, 1
                                             ], padding="VALID") + bias
                STrelu1 = tf.nn.relu(STconv1)
            with tf.variable_scope("conv2"):
                weight, bias = createVariable([7, 7, STconv1dim, STconv2dim],
                                              stddev)
                STconv2 = tf.nn.conv2d(
                    STrelu1, weight, strides=[1, 1, 1, 1
                                              ], padding="VALID") + bias
                STrelu2 = tf.nn.relu(STconv2)
                STmaxpool2 = tf.nn.max_pool(STrelu2,
                                            ksize=[1, 2, 2, 1],
                                            strides=[1, 2, 2, 1],
                                            padding="VALID")
            STmaxpool2vec = tf.reshape(STmaxpool2, [-1, STconv2fcDim])
            with tf.variable_scope("fc3"):
                weight, bias = createVariable([STconv2fcDim, STfc3dim], stddev)
                STfc3 = tf.matmul(STmaxpool2vec, weight) + bias
                STrelu3 = tf.nn.relu(STfc3)
            with tf.variable_scope("fc4"):
                weight, bias = createVariable([STfc3dim, opt.pDim], 0, True)
                STfc4 = tf.matmul(STrelu3, weight) + bias
            p = warp.compose(p, STfc4, opt)
    warpMtrx = warp.vec2mtrxBatch(p, opt)
    ImWarp = data.imageWarpIm(imageInput, warpMtrx, opt)
    util.makeImageSummary("imageST{0}".format(STlayerN), ImWarp, opt)
    return ImWarp, p
Beispiel #5
0
print("GPU device: {0}".format(args.gpu))
print("------------------------------------------")

tf.reset_default_graph()
tfConfig = tf.ConfigProto(allow_soft_placement=True)
tfConfig.gpu_options.allow_growth = True
# build graph
with tf.device(params.GPUdevice):
    # generate training data on the fly
    imageRawBatch = tf.placeholder(tf.float32,
                                   shape=[None, 28, 28],
                                   name="image")
    pInitBatch = data.genPerturbations(params)
    pInitMtrxBatch = warp.vec2mtrxBatch(pInitBatch, params)
    ImBatch = data.imageWarpIm(imageRawBatch,
                               pInitMtrxBatch,
                               params,
                               name=None)
    # build network
    if args.type == "CNN":
        outputBatch = graph.buildFullCNN(ImBatch, [3, 6, 9, 12, 48], 0.1,
                                         params)
    elif args.type == "STN":
        ImWarpBatch, pBatch = graphST.ST_depth4_CCFF(ImBatch, pInitBatch, 1,
                                                     [4, 8, 48], 0.01, params)
        outputBatch = graph.buildCNN(ImWarpBatch, [3], 0.03, params)
    elif args.type == "cSTN":
        ImWarpBatch, pBatch = graphST.cST_depth4_CCFF(imageRawBatch,
                                                      pInitBatch, 1,
                                                      [4, 8, 48], 0.01, params)
        outputBatch = graph.buildCNN(ImWarpBatch, [3], 0.03, params)
    elif args.type == "ICSTN":
Beispiel #6
0
print("------------------------------------------")

tf.reset_default_graph()
tfConfig = tf.ConfigProto(allow_soft_placement=True)
tfConfig.gpu_options.allow_growth = True
# build graph
with tf.device(params.GPUdevice):
    # generate training data on the fly
    imageRawBatch = tf.placeholder(tf.float32,
                                   shape=[None, 32, 32, None],
                                   name="image")
    pInitBatch = data.genPerturbations(params)  #produce raodong
    pInitMtrxBatch = warp.vec2mtrxBatch(
        pInitBatch, params)  #jiang rao dong can shu zhuan hua wei ju zhen
    ImBatch = data.imageWarpIm(
        imageRawBatch, pInitMtrxBatch, params,
        name=None)  #cong mei pi tuxiang zhuanhua wei bianhua hou de tuxiang
    # build network
    if args.type == "CNN":
        outputBatch = graph.buildFullCNN(imageRawBatch, [64, 64, 128, 300],
                                         0.1, params)
    elif args.type == "STN":
        ImWarpBatch, pBatch = graphST.ST_depth1_F(imageRawBatch, pInitBatch, 1,
                                                  [65], 0.01, params)
        outputBatch = graph.buildFullCNN(ImWarpBatch, [64, 64, 128, 300], 0.03,
                                         params)
    elif args.type == "cSTN":
        ImWarpBatch, pBatch = graphST.cST_depth4_CCFF(imageRawBatch,
                                                      pInitBatch, 1,
                                                      [65, 65, 128], 0.01,
                                                      params)
Beispiel #7
0
print("warpScale: (pert) {0} (trans) {1}".format(opt.warpScale["pert"],opt.warpScale["trans"]))
print("warpType: {0}".format(opt.warpType))
print("batchSize: {0}".format(opt.batchSize))
print("GPU device: {0}".format(opt.gpu))
print("------------------------------------------")

tf.reset_default_graph()
tfConfig = tf.ConfigProto(allow_soft_placement=True)
tfConfig.gpu_options.allow_growth = True
# build graph
with tf.device(opt.GPUdevice):
	# generate training data on the fly
	imageRawBatch = tf.placeholder(tf.float32,shape=[None,28,28],name="image")
	pInitBatch = data.genPerturbations(opt)
	pInitMtrxBatch = warp.vec2mtrxBatch(pInitBatch,opt)
	ImBatch = data.imageWarpIm(imageRawBatch,pInitMtrxBatch,opt,name=None)
	# build network
	if opt.type=="CNN":
		outputBatch = graph.fullCNN(opt,ImBatch,[3,6,9,12,48],0.1)
	elif opt.type=="STN":
		ImWarpBatch,pBatch = graph.STN(opt,ImBatch,pInitBatch,1,[4,8,48],0.01)
		outputBatch = graph.CNN(opt,ImWarpBatch,[3],0.03)
	elif opt.type=="cSTN":
		ImWarpBatch,pBatch = graph.cSTN(opt,imageRawBatch,pInitBatch,1,[4,8,48],0.01)
		outputBatch = graph.CNN(opt,ImWarpBatch,[3],0.03)
	elif opt.type=="ICSTN":
		ImWarpBatch,pBatch = graph.ICSTN(opt,imageRawBatch,pInitBatch,opt.recurN,[4,8,48],0.01)
		outputBatch = graph.CNN(opt,ImWarpBatch,[3],0.03)
	# define loss/optimizer/summaries
	imageSummaries = tf.summary.merge_all()
	labelBatch = tf.placeholder(tf.float32,shape=[None,10],name="label")