def model_load_test(test_df, target_dir, test_prediction_dir, test_prediction_name, max_seq_len=64, num_labels=2, batch_size=32):
    bertmodel = DistilBertModel(requires_grad = False, num_labels = num_labels)
    tokenizer = bertmodel.tokenizer
    device = torch.device("cuda")
    print(20 * "=", " Preparing for testing ", 20 * "=")
    if platform == "linux" or platform == "linux2":
        checkpoint = torch.load(os.path.join(target_dir, "best.pth.tar"))
    else:
        checkpoint = torch.load(os.path.join(target_dir, "best.pth.tar"), map_location=device)
    # Retrieving model parameters from checkpoint.
    print("\t* Loading test data...")    

    test_data = DataPrecessForSentence(tokenizer,test_df, max_seq_len) 
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)

    print("\t* Building model...")
    
    model = bertmodel.to(device)
    model.load_state_dict(checkpoint["model"])
    print(20 * "=", " Testing BERT model on device: {} ".format(device), 20 * "=")
    batch_time, total_time, accuracy, predictions = test(model, test_loader)
    print("\n-> Average batch processing time: {:.4f}s, total test time: {:.4f}s, accuracy: {:.4f}%\n".format(batch_time, total_time, (accuracy*100)))
    test_prediction = pd.DataFrame({'prediction':predictions})
    if not os.path.exists(test_prediction_dir):
        os.makedirs(test_prediction_dir)
    test_prediction.to_csv(os.path.join(test_prediction_dir,test_prediction_name), index=False)
Beispiel #2
0
def data_prepare(text):
    single = []
    single.append(text)
    bert_tokenizer = BertTokenizer.from_pretrained('bert-base-chinese',
                                                   do_lower_case=True)
    test_data = DataPrecessForSentence(bert_tokenizer, single, pred=True)
    test_loader = DataLoader(test_data, shuffle=False, batch_size=1)
    return test_loader
Beispiel #3
0
def main(test_file, pretrained_file, batch_size=1):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    bert_tokenizer = BertTokenizer.from_pretrained('../pretrained_model/',
                                                   do_lower_case=True)
    if platform == "linux" or platform == "linux2":
        checkpoint = torch.load(pretrained_file)
    else:
        checkpoint = torch.load(pretrained_file, map_location=device)
    test_data = DataPrecessForSentence(bert_tokenizer, test_file, pred=True)
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)
    model = BertModelTest().to(device)
    model.load_state_dict(checkpoint['model'])
    result = predict(model, test_file, test_loader, device)

    return result
Beispiel #4
0
def main(test_file, pretrained_file, batch_size=32):

    device = torch.device("cuda")
    bert_tokenizer = BertTokenizer.from_pretrained('models/vocabs.txt', do_lower_case=True)
    print(20 * "=", " Preparing for testing ", 20 * "=")
    if platform == "linux" or platform == "linux2":
        checkpoint = torch.load(pretrained_file)
    else:
        checkpoint = torch.load(pretrained_file, map_location=device)
    # Retrieving model parameters from checkpoint.
    print("\t* Loading test data...")    
    test_data = DataPrecessForSentence(bert_tokenizer, test_file)
    test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size)
    print("\t* Building model...")
    model = BertModelTest().to(device)
    model.load_state_dict(checkpoint["model"])
    print(20 * "=", " Testing roberta model on device: {} ".format(device), 20 * "=")
    batch_time, total_time, accuracy, auc = test(model, test_loader)
    print("\n-> Average batch processing time: {:.4f}s, total test time: {:.4f}s, accuracy: {:.4f}%, auc: {:.4f}\n".format(batch_time, total_time, (accuracy*100), auc))
Beispiel #5
0
def main(test, pretrained_file, batch_size=1):

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # bert_tokenizer = BertTokenizer.from_pretrained("chinese_wwm_ext_L-12_H-768_A-12/vocab.txt", do_lower_case=True)
    bert_tokenizer = BertTokenizer.from_pretrained('bert-base-chinese',
                                                   do_lower_case=True)
    print(20 * "=", " Preparing for testing ", 20 * "=")
    if platform == "linux" or platform == "linux2":
        checkpoint = torch.load(pretrained_file + '/best.pth.tar')
    else:
        checkpoint = torch.load(pretrained_file + '/best.pth.tar',
                                map_location=device)
    # Retrieving model parameters from checkpoint.
    print("\t* Loading test data...")
    test_data = DataPrecessForSentence(bert_tokenizer, test, pred=True)
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)
    print("\t* Building model...")
    config = Config()
    model = BertModelTest(pretrained_file + '/config.json', config).to(device)
    model.load_state_dict(checkpoint["model"])
    print(20 * "=", " Testing BERT model on device: {} ".format(device),
          20 * "=")
    result = predict(model, test_loader, device)
    print(result)
def model_train_validate_test(train_df, dev_df, test_df, target_dir, 
         max_seq_len=64,
         num_labels=2,
         epochs=10,
         batch_size=32,
         lr=2e-05,
         patience=1,
         max_grad_norm=10.0,
         if_save_model=True,
         checkpoint=None):

    bertmodel = DistilBertModel(requires_grad = True, num_labels = num_labels)
    tokenizer = bertmodel.tokenizer
    
    print(20 * "=", " Preparing for training ", 20 * "=")
    # 保存模型的路径,没有则创建文件夹
    if not os.path.exists(target_dir):
        os.makedirs(target_dir)
    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    train_data = DataPrecessForSentence(tokenizer, train_df, max_seq_len)
    train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)

    print("\t* Loading validation data...")
    dev_data = DataPrecessForSentence(tokenizer,dev_df, max_seq_len)
    dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size)
    
    print("\t* Loading test data...")
    test_data = DataPrecessForSentence(tokenizer,test_df, max_seq_len) 
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    device = torch.device("cuda")
    model = bertmodel.to(device)
    total_params = sum(p.numel() for p in model.parameters())
    print(f'{total_params:,} total parameters.')
    total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f'{total_trainable_params:,} training parameters.')
    # -------------------- Preparation for training  ------------------- #
    # 待优化的参数
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
            {
                    'params':[p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
                    'weight_decay':0.01
            },
            {
                    'params':[p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
                    'weight_decay':0.0
            }
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=lr)

    # 当网络的评价指标不在提升的时候,可以通过降低网络的学习率来提高网络性能
    # warmup_steps = math.ceil(len(train_loader) * epochs * 0.1)
    # total_steps = len(train_loader) * epochs
    # scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
    
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="max", factor=0.85, patience=2, verbose=True)

    best_score = 0.0
    start_epoch = 1
    # Data for loss curves plot
    epochs_count = []
    train_losses = []
    train_accuracies = []
    valid_losses = []
    valid_accuracies = []
    # Continuing training from a checkpoint if one was given as argument
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]
        print("\t* Training will continue on existing model from epoch {}...".format(start_epoch))
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        train_accuracy = checkpoint["train_accuracy"]
        valid_losses = checkpoint["valid_losses"]
        valid_accuracy = checkpoint["valid_accuracy"]
     # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy, _, = validate(model, dev_loader)
    print("\n* Validation loss before training: {:.4f}, accuracy: {:.4f}%".format(valid_loss, (valid_accuracy*100)))
    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training roberta model on device: {}".format(device), 20 * "=")
    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        epochs_count.append(epoch)

        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader, optimizer, epoch, max_grad_norm)
        train_losses.append(epoch_loss)
        train_accuracies.append(epoch_accuracy)
        
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".format(epoch_time, epoch_loss, (epoch_accuracy*100)))
        
        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy, _, = validate(model, dev_loader)
        valid_losses.append(epoch_loss)
        valid_accuracies.append(epoch_accuracy)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
              .format(epoch_time, epoch_loss, (epoch_accuracy*100)))
        
        # Update the optimizer's learning rate with the scheduler.
        # scheduler.step()
        scheduler.step(epoch_accuracy)
        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0
            
            if (if_save_model):
                torch.save({"epoch": epoch, 
                        "model": model.state_dict(),
                        "optimizer": optimizer.state_dict(),
                        "best_score": best_score, # 验证集上的最优准确率
                        "epochs_count": epochs_count,
                        "train_losses": train_losses,
                        "train_accuracy": train_accuracies,
                        "valid_losses": valid_losses,
                        "valid_accuracy": valid_accuracies
                        },
                        os.path.join(target_dir, "best.pth.tar"))
                print("save model succesfully!\n")
            
            print("* Test for epoch {}:".format(epoch))
            _, _, test_accuracy, predictions = validate(model, test_loader)
            print("Test accuracy: {:.4f}%\n".format(test_accuracy))
            test_prediction = pd.DataFrame({'prediction':predictions})
            test_prediction.to_csv(os.path.join(target_dir,"test_prediction.csv"), index=False)
             
        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break
Beispiel #7
0
def main(train_file,
         dev_file,
         target_dir,
         epochs=10,
         batch_size=32,
         lr=2e-05,
         patience=3,
         max_grad_norm=10.0,
         checkpoint=None):
    bert_tokenizer = XLNetTokenizer.from_pretrained('hfl/chinese-xlnet-base',
                                                    do_lower_case=True)
    device = torch.device("cuda")
    print(20 * "=", " Preparing for training ", 20 * "=")
    # 保存模型的路径
    if not os.path.exists(target_dir):
        os.makedirs(target_dir)
    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    train_data = DataPrecessForSentence(bert_tokenizer, train_file)
    train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
    print("\t* Loading validation data...")
    dev_data = DataPrecessForSentence(bert_tokenizer, dev_file)
    dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    model = XlnetModel().to(device)
    # -------------------- Preparation for training  ------------------- #
    # 待优化的参数
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters, lr=lr)
    #optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="max",
                                                           factor=0.85,
                                                           patience=0)
    best_score = 0.0
    start_epoch = 1
    # Data for loss curves plot
    epochs_count = []
    train_losses = []
    valid_losses = []
    # Continuing training from a checkpoint if one was given as argument
    if checkpoint:
        checkpoint = torch.load(checkpoint, map_location=torch.device("cpu"))
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]
        print("\t* Training will continue on existing model from epoch {}...".
              format(start_epoch))
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        valid_losses = checkpoint["valid_losses"]
    # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy, auc = validate(model, dev_loader)
    print(
        "\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%, auc: {:.4f}"
        .format(valid_loss, (valid_accuracy * 100), auc))
    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training Xlnet model on device: {}".format(device),
          20 * "=")
    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        epochs_count.append(epoch)
        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader,
                                                       optimizer, epoch,
                                                       max_grad_norm)
        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))
        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy, epoch_auc = validate(
            model, dev_loader)
        valid_losses.append(epoch_loss)
        print(
            "-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%, auc: {:.4f}\n"
            .format(epoch_time, epoch_loss, (epoch_accuracy * 100), epoch_auc))
        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)
        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0
            torch.save(
                {
                    "epoch": epoch,
                    "model": model.state_dict(),
                    "best_score": best_score,
                    "epochs_count": epochs_count,
                    "train_losses": train_losses,
                    "valid_losses": valid_losses
                }, os.path.join(target_dir, "best.pth.tar"))
        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break
Beispiel #8
0
def predict_result(model, bert_tokenizer, device, test_list, batch_size=1):
    print("\t* Loading test data...")
    test_data = DataPrecessForSentence(bert_tokenizer, test_list, pred=True)
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)
    result = predict(model, test_loader, device)
    return result