Beispiel #1
0
def disparity_minus_mean():
    down_factor = 2
#    index = 1
    test=False
    n_disp = 128
        
    differences = []
    border = 10
    for index in range(2):
        print(index)
        source = KittiMultiViewSource(index, test=test, n_frames=0)
        average_disparity = source.get_average_disparity()
        
#        frame = load_pair(index, test, frame=i, multiview=True)
        frame = source.frame_ten
        gt_frame = calc_ground_truth(frame, n_disp, down_factor=down_factor, iters=50)
        d = gt_frame.astype('int') - average_disparity.astype('int')
        d = d[border:-border,border:-border]
        differences.append(d.flatten())
                
#        plt.subplot(211)
#        plt.imshow(gt_frame)
#        plt.colorbar()
#        plt.subplot(212)
#        plt.imshow(average_disparity)
#        plt.colorbar()
#        plt.show()        
    
    foo = np.array(differences)
    print()
    print(np.array(differences).shape)
Beispiel #2
0
def disparity_minus_mean():
    down_factor = 2
    #    index = 1
    test = False
    n_disp = 128

    differences = []
    border = 10
    for index in range(2):
        print(index)
        source = KittiMultiViewSource(index, test=test, n_frames=0)
        average_disparity = source.get_average_disparity()

        #        frame = load_pair(index, test, frame=i, multiview=True)
        frame = source.frame_ten
        gt_frame = calc_ground_truth(frame,
                                     n_disp,
                                     down_factor=down_factor,
                                     iters=50)
        d = gt_frame.astype('int') - average_disparity.astype('int')
        d = d[border:-border, border:-border]
        differences.append(d.flatten())

#        plt.subplot(211)
#        plt.imshow(gt_frame)
#        plt.colorbar()
#        plt.subplot(212)
#        plt.imshow(average_disparity)
#        plt.colorbar()
#        plt.show()

    foo = np.array(differences)
    print()
    print(np.array(differences).shape)
Beispiel #3
0
def foveation_sequence():
    frame_down_factor = 1
    mem_down_factor = 2     # relative to the frame down factor
    coarse_down_factor = 2  # for the coarse comparison

    fs = 80
    fovea_shape = (fs, fs)
    full_values = 128
    values = full_values / 2**frame_down_factor

    index = 15
    n_frames = 10
    source = KittiMultiViewSource(index, test=False, n_frames=n_frames)
    full_shape = source.frame_ten[0].shape
    frame_ten = [downsample(source.frame_ten[0], frame_down_factor),
                 downsample(source.frame_ten[1], frame_down_factor)]
    frame_shape = frame_ten[0].shape

    average_disp = source.get_average_disparity()
    average_disp = cv2.pyrUp(average_disp)[:frame_shape[0],:frame_shape[1]-values]

    filter = Filter(average_disp, frame_down_factor, mem_down_factor,
                    fovea_shape, frame_shape, values, verbose=False, memory_length=0)

    plt.figure()
    import matplotlib.cm as cm
    for i in range(0, 10, 2):
        frame = [downsample(source.frame_sequence[i][0], frame_down_factor),
                 downsample(source.frame_sequence[i][1], frame_down_factor)]
        filter_disp, fovea_corner = filter.process_frame(None, frame)

        edge = 5

        plt.subplot(5,1,i/2+1)
#        plt.subplot(5,2,i+1)
        plt.imshow(trim(frame[0], values, edge), cmap = cm.Greys_r)
#         remove_axes()

#         plt.subplot(5,2,i+2)
#         plt.imshow(trim(filter_disp, values, edge), vmin=0, vmax=full_values)
 
        fovea_corner = fovea_corner[0]
#        plot_edges(fovea_ij, (fs, fs))        
        fi, fj = fovea_corner
        fm = fs
        fn = fs
        plt.plot([fj, fj+fn, fj+fn, fj, fj], [fi, fi, fi+fm, fi+fm, fi], 'white')
        
#        plt.scatter(fovea_corner[1]-values+fs/2, fovea_corner[0]-edge+fs/2, s=100, c='green', marker='+', linewidths=2)
#        plt.scatter(fovea_corner[1]-values, fovea_corner[0]-edge, s=9, c='green', marker='+', linewidths=3)
#        plt.scatter(fovea_corner[1]-values+fs, fovea_corner[0]-edge+fs, s=9, c='green', marker='+', linewidths=3)
#        plt.scatter(fovea_corner[1]-values, fovea_corner[0]-edge+fs, s=9, c='green', marker='+', linewidths=3)
#        plt.scatter(fovea_corner[1]-values+fs, fovea_corner[0]-edge, s=9, c='green', marker='+', linewidths=3)
        
        remove_axes()
        
    plt.tight_layout(-1)
    plt.show()
Beispiel #4
0
def objective(args):
    # args['ksize'] = int(args['ksize'])

    costs = []
    # for index in range(3):
    # for index in range(10):
    for index in range(194):

        if index in [31, 82, 114]:  # missing frames
            continue

        source = KittiMultiViewSource(index, test=False, n_frames=0)
        full_shape = source.frame_ten[0].shape
        frame_ten = [downsample(source.frame_ten[0], frame_down_factor),
                     downsample(source.frame_ten[1], frame_down_factor)]
        frame_shape = frame_ten[0].shape

        true_points = source.get_ground_truth_points(occluded=False)

        # determine fovea shape
        fovea_pixels = np.ceil(fovea_fraction * frame_shape[0] * (frame_shape[1] - values))
        if fovea_pixels > 0:
            fovea_height = np.minimum(frame_shape[0], np.ceil(fovea_pixels ** .5))
            fovea_width = np.minimum(frame_shape[1], np.ceil(fovea_pixels / fovea_height))
            fovea_shape = fovea_height, fovea_width
        else:
            fovea_shape = (0, 0)

        # average disparity
        try:
            average_disp = source.get_average_disparity()
        except IOError:  # likely does not have a full 20 frames
            print("Skipping index %d (lacks frames)" % index)
            continue

        average_disp = upsample_average_disp(
            average_disp, frame_down_factor, frame_shape, values)

        # run the filter
        foveal = Foveal(average_disp, frame_down_factor, mem_down_factor,
                        fovea_shape, frame_shape, values,
                        iters=iters, fovea_levels=fovea_levels, **args)
        disp, _ = foveal.process_frame(frame_ten)

        # cost = cost_on_points(disp[:,values:], true_points, full_shape=full_shape)
        cost = cost_on_points(disp[:,values:], true_points, average_disp,
                              full_shape=full_shape, clip=error_clip)

        costs.append(cost)

    error = np.mean(costs)

    errors[arg_key(args)] = error
    args_s = "{%s}" % ', '.join("%r: %s" % (k, args[k]) for k in sorted(space))
    print("%s: %s" % (error, args_s))
    return error
Beispiel #5
0
#plt.show(block=True)

area = 93 * 275
fovea_area = 0.4 * area
height = np.floor(np.sqrt(fovea_area))
width = np.floor(fovea_area / height)
fovea_shape = (height, width)

print(np.floor(np.sqrt(area)))

n_frames = 194
best_nums = []
for index in range(n_frames):
    print(index)
    source = KittiMultiViewSource(index)
    average_disparity = source.get_average_disparity()
    uc = UnusuallyClose(average_disparity)
    gt = calc_ground_truth(source.frame_ten, 128, down_factor=2, iters=3)
    cost = uc.get_importance(gt)
    foveas_ij, fovea_part_shape = _choose_foveas(cost, fovea_shape, values, 30)
    best_nums.append(len(foveas_ij))

print('best nums:')
print(best_nums)

plt.figure()
plt.hist(best_nums, np.add(range(31), 0.5))
plt.xlabel('Number of foveas', fontsize=18)
plt.ylabel('Frequency of best cost', fontsize=18)
plt.gca().tick_params(labelsize='18')
plt.xlim((0, 31))
Beispiel #6
0
area = 93*275
fovea_area = 0.4 * area 
height = np.floor(np.sqrt(fovea_area))
width = np.floor(fovea_area / height)
fovea_shape = (height, width)


print(np.floor(np.sqrt(area)))

n_frames = 194
best_nums = []
for index in range(n_frames):
    print(index)
    source = KittiMultiViewSource(index)
    average_disparity = source.get_average_disparity()
    uc = UnusuallyClose(average_disparity)
    gt = calc_ground_truth(source.frame_ten, 128, down_factor=2, iters=3)
    cost = uc.get_importance(gt)
    foveas_ij, fovea_part_shape = _choose_foveas(cost, fovea_shape, values, 30)
    best_nums.append(len(foveas_ij))

print('best nums:')
print(best_nums)

plt.figure()
plt.hist(best_nums, np.add(range(31), 0.5))
plt.xlabel('Number of foveas', fontsize=18)
plt.ylabel('Frequency of best cost', fontsize=18)
plt.gca().tick_params(labelsize='18')
plt.xlim((0, 31))
Beispiel #7
0
def foveation_sequence():
    frame_down_factor = 1
    mem_down_factor = 2  # relative to the frame down factor
    coarse_down_factor = 2  # for the coarse comparison

    fs = 80
    fovea_shape = (fs, fs)
    full_values = 128
    values = full_values / 2**frame_down_factor

    index = 15
    n_frames = 10
    source = KittiMultiViewSource(index, test=False, n_frames=n_frames)
    full_shape = source.frame_ten[0].shape
    frame_ten = [
        downsample(source.frame_ten[0], frame_down_factor),
        downsample(source.frame_ten[1], frame_down_factor)
    ]
    frame_shape = frame_ten[0].shape

    average_disp = source.get_average_disparity()
    average_disp = cv2.pyrUp(average_disp)[:frame_shape[0], :frame_shape[1] -
                                           values]

    filter = Filter(average_disp,
                    frame_down_factor,
                    mem_down_factor,
                    fovea_shape,
                    frame_shape,
                    values,
                    verbose=False,
                    memory_length=0)

    plt.figure()
    import matplotlib.cm as cm
    for i in range(0, 10, 2):
        frame = [
            downsample(source.frame_sequence[i][0], frame_down_factor),
            downsample(source.frame_sequence[i][1], frame_down_factor)
        ]
        filter_disp, fovea_corner = filter.process_frame(None, frame)

        edge = 5

        plt.subplot(5, 1, i / 2 + 1)
        #        plt.subplot(5,2,i+1)
        plt.imshow(trim(frame[0], values, edge), cmap=cm.Greys_r)
        #         remove_axes()

        #         plt.subplot(5,2,i+2)
        #         plt.imshow(trim(filter_disp, values, edge), vmin=0, vmax=full_values)

        fovea_corner = fovea_corner[0]
        #        plot_edges(fovea_ij, (fs, fs))
        fi, fj = fovea_corner
        fm = fs
        fn = fs
        plt.plot([fj, fj + fn, fj + fn, fj, fj],
                 [fi, fi, fi + fm, fi + fm, fi], 'white')

        #        plt.scatter(fovea_corner[1]-values+fs/2, fovea_corner[0]-edge+fs/2, s=100, c='green', marker='+', linewidths=2)
        #        plt.scatter(fovea_corner[1]-values, fovea_corner[0]-edge, s=9, c='green', marker='+', linewidths=3)
        #        plt.scatter(fovea_corner[1]-values+fs, fovea_corner[0]-edge+fs, s=9, c='green', marker='+', linewidths=3)
        #        plt.scatter(fovea_corner[1]-values, fovea_corner[0]-edge+fs, s=9, c='green', marker='+', linewidths=3)
        #        plt.scatter(fovea_corner[1]-values+fs, fovea_corner[0]-edge, s=9, c='green', marker='+', linewidths=3)

        remove_axes()

    plt.tight_layout(-1)
    plt.show()