def __augment(self): '''Applies augmentation incrementally''' self.X_aug, self.y_aug, self.r_aug = [], [], [] for i in range(len(self.X)): for _ in range(self.size_factor): x = np.copy(self.X[i]) if self.permutation != 0: x = da.permute(x, nPerm=self.permutation) if self.rotation != 0: x = da.rotate(x, rotation=self.rotation, mask=self.rotation_mask) if self.time_warping != 0: x = da.time_warp(x, sigma=self.time_warping) if self.scale_sigma != 0: x = da.scale(x, sigma=self.scale_sigma) if self.mag_warping != 0: x = da.mag_warp(x, sigma=self.mag_warping) if self.noise_snr_db != 0: x = da.jitter(x, snr_db=self.noise_snr_db) if self.permutation or self.rotation or self.time_warping or self.scale_sigma or self.mag_warping or self.noise_snr_db: self.X_aug.append(x) self.y_aug.append(self.y[i]) self.r_aug.append(self.r[i]) self.X_aug.append(self.X[i]) self.y_aug.append(self.y[i]) self.r_aug.append(self.r[i])
def __augment(self): '''Applies augmentation incrementally''' self.X_aug, self.y_aug, self.r_aug = [], [], [] for i in range(len(self.X)): for _ in range(self.size_factor): x = np.copy(self.X[i]) if self.noise_snr_db != 0: x = da.jitter(x, snr_db=self.noise_snr_db) self.X_aug.append(x) self.y_aug.append(self.y[i]) self.r_aug.append(self.r[i]) self.X_aug.append(self.X[i]) self.y_aug.append(self.y[i]) self.r_aug.append(self.r[i])
def __augment(self): '''Data augmentation application''' self.X_aug, self.y_aug, self.r_aug = [], [], [] for i in range(len(self.X)): for _ in range(self.size_factor): x = np.copy(self.X[i]) if self.snr_db != 0: x = da.jitter(x, snr_db=self.snr_db) if self.time_warping != 0: x = da.time_warp(x, sigma=self.time_warping) if self.permutation or self.rotation or self.time_warping or self.scale_sigma or self.mag_warping or self.noise_snr_db: self.X_aug.append(x) self.y_aug.append(self.y[i]) self.r_aug.append(self.r[i]) self.X_aug.append(self.X[i]) self.y_aug.append(self.y[i]) self.r_aug.append(self.r[i])