def load_data(self): self.train_dataloader = TrainData(self.config) self.eval_dataloader = TestData(self.config) train_data_path = os.path.join(self.config.BASE_DIR, self.config.train_data_path) self.train_inputs, self.train_labels, self.t2ix = self.train_dataloader.gen_train_data(train_data_path) eval_data_path = os.path.join(self.config.BASE_DIR, self.config.eval_data_path) self.eval_inputs, self.eval_labels, _ = self.eval_dataloader.gen_test_data(eval_data_path) self.vocab_size = self.train_dataloader.vocab_size self.word_vectors = self.train_dataloader.word_vectors
def load_data(self): """ 创建数据对象 :return: """ # 生成训练集对象并生成训练数据 data_obj = TrainData(self.config) return data_obj
class Trainer: def __init__(self, config): self.config = config self.load_data() # 加载数据集 self.model = BiLSTM(self.config, self.vocab_size, self.word_vectors) # 初始化模型 def load_data(self): self.train_dataloader = TrainData(self.config) self.eval_dataloader = TestData(self.config) train_data_path = os.path.join(self.config.BASE_DIR, self.config.train_data_path) self.train_inputs, self.train_labels, self.t2ix = self.train_dataloader.gen_train_data( train_data_path) eval_data_path = os.path.join(self.config.BASE_DIR, self.config.eval_data_path) self.eval_inputs, self.eval_labels, _ = self.eval_dataloader.gen_test_data( eval_data_path) self.vocab_size = self.train_dataloader.vocab_size self.word_vectors = self.train_dataloader.word_vectors def train(self): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9, allow_growth=True) sess_config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True, gpu_options=gpu_options) with tf.Session(config=sess_config) as sess: sess.run(tf.global_variables_initializer()) # 初始化计算图变量 current_step = 0 # 创建Train/Eval的summar路径和写入对象 train_summary_path = os.path.join( self.config.BASE_DIR, self.config.summary_path + "/train") eval_summary_path = os.path.join( self.config.BASE_DIR, self.config.summary_path + "/eval") self._check_directory(train_summary_path) self._check_directory(eval_summary_path) train_summary_writer = tf.summary.FileWriter( train_summary_path, sess.graph) eval_summary_writer = tf.summary.FileWriter( eval_summary_path, sess.graph) # Train & Eval Process for epoch in range(self.config.epochs): print(f"----- Epoch {epoch + 1}/{self.config.epochs} -----") for batch in self.train_dataloader.next_batch( self.train_inputs, self.train_labels, self.config.batch_size): summary, loss, predictions = self.model.train( sess, batch, self.config.keep_prob) accuracy = self.model.get_metrics(sess, batch) train_summary_writer.add_summary(summary, current_step) print( f"! Train epoch: {epoch}, step: {current_step}, train loss: {loss}, accuracy: {accuracy}" ) current_step += 1 if self.eval_dataloader and current_step % self.config.eval_every == 0: losses = [] acces = [] for eval_batch in self.eval_dataloader.next_batch( self.eval_inputs, self.eval_labels, self.config.batch_size): eval_summary, eval_loss, eval_predictions = self.model.eval( sess, eval_batch) eval_accuracy = self.model.get_metrics(sess, batch) eval_summary_writer.add_summary( eval_summary, current_step) losses.append(eval_loss) acces.append(eval_accuracy) print( f"! Eval epoch: {epoch}, step: {current_step}, eval loss: {sum(losses) / len(losses)}, accuracy: {sum(acces) / len(acces)}" ) if self.config.ckpt_model_path: save_path = os.path.join( self.config.BASE_DIR, self.config.ckpt_model_path) self._check_directory(save_path) model_save_path = os.path.join( save_path, self.config.model_name) self.model.saver.save(sess, model_save_path, global_step=current_step) def _check_directory(self, path): if not os.path.exists(path): os.makedirs(path)
def load_data(self): """加载数据集""" self.train_data_loader = TrainData(self.config) self.config.test_data = self.config.eval_data # 使用验证集,进行训练过程中的测试 self.eval_data_loader = TestData(self.config)
class Trainer: def __init__(self, config): self.config = config self.train_data_loader = None self.eval_data_loader = None # 加载数据集 self.load_data() self.train_inputs, self.train_labels, label_to_idx = self.train_data_loader.gen_data( ) self.vocab_size = self.train_data_loader.vocab_size self.word_vectors = self.train_data_loader.word_vectors print(f"train data size: {len(self.train_labels)}") print(f"vocab size: {self.vocab_size}") self.label_list = [value for key, value in label_to_idx.items()] self.eval_inputs, self.eval_labels = self.eval_data_loader.gen_data() # 初始化模型 self.model = TextCNN(config=self.config, vocab_size=self.vocab_size, word_vectors=self.word_vectors) def load_data(self): """加载数据集""" self.train_data_loader = TrainData(self.config) self.config.test_data = self.config.eval_data # 使用验证集,进行训练过程中的测试 self.eval_data_loader = TestData(self.config) def train(self): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9, allow_growth=True) sess_config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True, gpu_options=gpu_options) with tf.Session(config=sess_config) as sess: sess.run(tf.global_variables_initializer()) # 初始化变量 current_step = 0 # 创建Train/Eval的summar路径和写入对象 train_summary_path = os.path.join( self.config.BASE_DIR, self.config.summary_path + "/train") if not os.path.exists(train_summary_path): os.makedirs(train_summary_path) train_summary_writer = tf.summary.FileWriter( train_summary_path, sess.graph) eval_summary_path = os.path.join( self.config.BASE_DIR, self.config.summary_path + "/eval") if not os.path.exists(eval_summary_path): os.makedirs(eval_summary_path) eval_summary_writer = tf.summary.FileWriter( eval_summary_path, sess.graph) # Train & Eval Process for epoch in range(self.config.epochs): print(f"----- Epoch {epoch + 1}/{self.config.epochs} -----") for batch in self.train_data_loader.next_batch( self.train_inputs, self.train_labels, self.config.batch_size): summary, loss, predictions = self.model.train( sess, batch, self.config.keep_prob) train_summary_writer.add_summary(summary) if self.config.num_classes == 1: acc = get_binary_metrics(pred_y=predictions.tolist(), true_y=batch['y']) print("Train step: {}, acc: {:.3f}".format( current_step, acc)) elif self.config.num_classes > 1: acc = get_multi_metrics(pred_y=predictions.tolist(), true_y=batch['y']) print("Train step: {}, acc: {:.3f}".format( current_step, acc)) current_step += 1 if self.eval_data_loader and current_step % self.config.ckeckpoint_every == 0: eval_losses = [] eval_accs = [] for eval_batch in self.eval_data_loader.next_batch( self.eval_inputs, self.eval_labels, self.config.batch_size): eval_summary, eval_loss, eval_predictions = self.model.eval( sess, eval_batch) eval_summary_writer.add_summary(eval_summary) eval_losses.append(eval_loss) if self.config.num_classes == 1: acc = get_binary_metrics( pred_y=eval_predictions.tolist(), true_y=batch['y']) eval_accs.append(acc) elif self.config.num_classes > 1: acc = get_multi_metrics( pred_y=eval_predictions.tolist(), true_y=batch['y']) eval_accs.append(acc) print( f"Eval \tloss: {list_mean(eval_losses)}, acc: {list_mean(eval_accs)}" ) if self.config.ckpt_model_path: save_path = os.path.join( self.config.BASE_DIR, self.config.ckpt_model_path) if not os.path.exists(save_path): os.makedirs(save_path) model_save_path = os.path.join( save_path, self.config.model_name) self.model.saver.save(sess, model_save_path, global_step=current_step)