class DataTests(unittest.TestCase): def setUp(self) -> None: self.parser = Parser() def test_row_length(self): for row in self.parser.answers: self.assertTrue(self.parser.correct_row_length(row), 'Incorrect row length: ' + row) def test_question_number(self): i = 1 for row in self.parser.answers: self.assertEqual(self.parser.question_order(row), i, 'Missing answer number: ' + str(i)) i += 1 def test_answer_is_digit(self): for row in self.parser.answers: for number in row.split(';'): self.assertTrue(self.parser.is_number(number), 'Answer is not number: ' + repr(number)) def test_number_is_correct_choice(self): for row in self.parser.answers: for number in row.split(';'): if self.parser.is_number(number): self.assertIn( int(number), [0, 1, 2, 3, 4, 5, 6, 7, 99], 'Number ' + number + ' is not correct answer')
class ParserTest(unittest.TestCase): def __init__(self, *args, **kwargs): super(ParserTest, self).__init__(*args, **kwargs) self.parser = Parser() @data(('Sat May 04 15:00:33 +0000 2019', '3:00 PM - 4 May 2019'), ('', '')) @unpack def test_parse_date(self, input_date, formatted_date): self.assertEqual(self.parser.parse_date(input_date), formatted_date) def test_tweet_result(self): with open('testdata/search.json', encoding='utf-8') as f: tweet_data = json.load(f) with open('testdata/user_tweet.json', encoding='utf-8') as f: user_data = json.load(f) tweet_outcome = self.parser.parse_tweets_result(tweet_data, 'search') user_outcome = self.parser.parse_tweets_result(user_data, 'user') self.assertEqual(tweet_outcome[0]['account']['fullname'], 'Twitter Dev') self.assertEqual(tweet_outcome[1]['likes'], 27) self.assertEqual(user_outcome[0]['retweets'], 284) self.assertEqual(user_outcome[1]['hashtags'], [])
def __init__(self, data, handler): self.handler = handler self.data = data self.parser = Parser() self.scheduler = sched.scheduler(time.time, time.sleep) self.thread = self.create_thread() self.kill = False self.port = None self.table = None self.interval = 1
def run(self): result_x = [[] for _ in range(self.max_track_size)] result_y = [[] for _ in range(self.max_track_size)] result_z = [[] for _ in range(self.max_track_size)] for data in self.datas: data = data[1].values.tolist() parser = Parser(data) x_ = parser.parse_x(self.horses_stats) y_ = parser.parse_y() z_ = parser.parse_z() if len(x_.shape) == 2 and x_.shape[1] == 9: result_x[len(data)].append(x_) result_y[len(data)].append(y_) result_z[len(data)].append(z_) return result_x, result_y, result_z
def testParseBytesToBytes(self): # b'DB\x04\x00\x00\x00\x00\x00\x00\x00ABCD1997' parser = Parser(BYTES_ENCODED) parser_test_function(self, parser=parser, code="D", dtype="B", length=4, payload=b'ABCD', remaining=0) head = Head(code=parser.code, dtype=parser.dtype, length=parser.length, remaining=parser.remaining) head_test_function(self, head=head, code="D", dtype="B", length=4, remaining=0) payload = Payload(data=parser.payload, dtype=parser.dtype, length=parser.length) payload_test_function(self, payload=payload, data=b'ABCD', dtype="B", length=4)
def testParseBytesToInt(self): parser = Parser(INT_ENCODED) parser_test_function(self, parser=parser, code="D", dtype="I", length=2, payload=257, remaining=256) head = Head(code=parser.code, dtype=parser.dtype, length=parser.length, remaining=parser.remaining) head_test_function(self, head=head, code="D", dtype="I", length=2, remaining=256) payload = Payload(data=parser.payload, dtype=parser.dtype, length=parser.length) payload_test_function(self, payload=payload, data=257, dtype="I", length=2)
def testParseBytesToStr(self): # b'DS\x04\x00\x00\x00\x00\x00\x00\x00ABCD1997' parser = Parser(data=STR_ENCODED) parser_test_function(self, parser=parser, code="D", dtype="S", length=4, payload="ABCD", remaining=0) head = Head(code=parser.code, dtype=parser.dtype, length=parser.length, remaining=parser.remaining) head_test_function(self, head=head, code="D", dtype="S", length=4, remaining=0) payload = Payload(data=parser.payload, dtype=parser.dtype, length=parser.length) payload_test_function(self, payload=payload, data="ABCD", dtype="S", length=4)
def testParseHandshakeToBytes(self): parser = Parser(HANDSHAKE_ENCODED) parser_test_function(self, parser=parser, code="H", dtype="B", length=0, payload=b"", remaining=0) head = Head(code=parser.code, dtype=parser.dtype, length=parser.length, remaining=parser.remaining) head_test_function(self, head=head, code="H", dtype="B", length=0, remaining=0) payload = Payload(data=parser.payload, dtype=parser.dtype, length=parser.length) payload_test_function(self, payload=payload, data=b"", dtype="B", length=0)
def user_tweets(username, limit=30): """ Get user tweets. Get the list of tweets that the user has on his feed in JSON format. Optional parameters: limit: integer, specifies the number of tweets to retrieve, the default should be 30 """ # Return if Limit is Not in the range of 0 to 200 if limit > 200 or limit < 0: return {"Message": "Please Provide a valid limit between 0-200"}, 422 # Initiate the TwitterAPI instance with the given Credentials try: api = TwitterAPI(consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET) except TwitterError as e: # Return with 401 if can't authenticate the user with given credentials return {"Message": e.message}, 401 # Query Param for twitter API query = {'screen_name': username, 'count': limit} try: x = api.GetTweets(query) except TwitterError as e: return {"Message": e.message}, 400 return Parser.parse_tweets_result(x, 'user'), 200
def search_tweets(hashtag, limit=30): """ Get tweets by a hashtag. Get the list of tweets with the given hashtag. Optional parameters: limit: integer, specifies the number of tweets to retrieve, the default should be 30 """ # Return if Limit is Not in the range of 0 to 200 if limit > 200 or limit < 0: return {"Message": "Please Provide a valid limit between 0-200"}, 422 # Initiate the TwitterAPI instance with the given Credentials try: api = TwitterAPI(consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET) except TwitterError as e: # Return with 401 if can't authenticate the user with given credentials return {"Message": e.message}, 401 # Query Param for twitter API query = {'q': '#{}'.format(hashtag), 'count': limit} try: x = api.GetSearch(query) except TwitterError as e: return {"Message": e.message}, 400 return Parser.parse_tweets_result(x, 'search'), 200
class Connection: def __init__(self, data, handler): self.handler = handler self.data = data self.parser = Parser() self.scheduler = sched.scheduler(time.time, time.sleep) self.thread = self.create_thread() self.kill = False self.port = None self.table = None self.interval = 1 def establish_connection(self): if self.port is not None: self.port.close() ports = serial.tools.list_ports.comports() for device in ports: if device.vid is None or device.pid is None: continue if hex(device.vid) == '0x10c4' and hex(device.pid) == '0xea60': try: self.port = serial.Serial(device.device, 2400, timeout=None, parity=serial.PARITY_NONE, rtscts=1) return True except serial.serialutil.SerialException: self.handler.info() return False return False def start_measurement(self): self.kill = False self.scheduler.enter(self.interval, 1, self.get_data) self.scheduler.run() def get_data(self): data_string = None try: data_string = "" while len(data_string) != 14: self.port.reset_input_buffer() data_string = self.port.read_until(b'\n') except serial.serialutil.SerialException: self.handler.window.cont_measurement = False if self.kill: self.handler.window.cont_measurement = False return self.scheduler.enter(self.interval, 1, self.get_data) try: # print("device", data_string) correct = self.data.insert_value(self.parser.parse(data_string)) if not correct: self.handler.window.cont_measurement = False return last_value = self.data.values[-1] self.table.add(last_value[0], last_value[1][0]) except (ValueError, TypeError): self.handler.window.cont_measurement = False def create_thread(self): return threading.Thread(target=self.start_measurement)
def testParseBytesToError(self): parser = Parser(ERROR_ENCODED) parser_test_function(self, parser=parser, code="E", dtype="B", length=0, payload=b"", remaining=0) head = Head(code=parser.code, dtype=parser.dtype, length=parser.length, remaining=parser.remaining) head_test_function(self, head, "E", "B", 0, 0, b'EB\00\00\00\00\00\00\00\00')
def testParseCorruptedStreamToBytes(self): parser = Parser(CORRUPTED_STREAM) parser_test_function(self, parser=parser, code="E", dtype="B", length=0, payload=b"", remaining=0) head = Head(code=parser.code, dtype=parser.dtype, length=parser.length, remaining=parser.remaining) head_test_function(self, head, "E", "B", 0, 0, b'EB\00\00\00\00\00\00\00\00')
def __init__(self, content: Union[bytes, str, int] = b'', code: str = "default", remaining: int = 0, encoded: bytes = None): if encoded: self.parser = Parser(encoded) self.head = Head(code=self.parser.code, dtype=self.parser.dtype, length=self.parser.length, remaining=self.parser.remaining) self.payload = Payload(data=self.parser.payload, dtype=self.parser.dtype, length=self.parser.length) self.end_of_package = self.parser.eop else: self.payload = Payload(content) self.head = Head(code=code, dtype=self.payload.dtype, length=self.payload.length, remaining=remaining) self.end_of_package = self.get_end_of_package() self.encoded = self.get_encoded()
def rescan_dat(): Parser().rescan_data()
def get_factor_by_year(name, year): factor: DataFrame = Parser().data[name] return factor[year]
learning_rate_info['staircase'] = True ##loss operations loss_op = tf.losses.sparse_softmax_cross_entropy one_hot = False loss_op_kwargs = None ##optimizers optimizer = tf.train.AdamOptimizer optimizer_kwargs = None image_height = 32 image_width = 32 image_channel = 3 class_numbers = 10 checkpoint_path = './checkpoints' model_checkpoint_path = join(checkpoint_path, 'model.ckpt') prior_weights = None train_summary_path = join(checkpoint_path, 'train') valid_summary_path = join(checkpoint_path, 'valid') train_tfrecords = '/opt/ml_data/cifar/cifar-10/train.tfrecords' valid_tfrecords = '/opt/ml_data/cifar/cifar-10/valid.tfrecords' ## information for parsing the tfrecord features={'image':tf.FixedLenFeature([], tf.string),\ 'label': tf.FixedLenFeature([], tf.int64 )} train_parser = Parser(features, True, image_height, image_width) valid_parser = Parser(features, False, image_height, image_width)
final_inst = list(sorted(self.pipeline.completed, key=lambda x: x.result["IF"])) for inst in final_inst: result = inst.print().ljust(25," ") + \ str(inst.result["IF"]).ljust(10," ") + \ str(inst.result["ID"]).ljust(10," ") + \ str(inst.result["EX"]).ljust(10," ") + \ str(inst.result["MEM"]).ljust(10," ") + \ str(inst.result["WB"]).ljust(10," ") + \ str(inst.hazards["raw"]).ljust(10," ") + \ str(inst.hazards["war"]).ljust(10," ") + \ str(inst.hazards["waw"]).ljust(10," ") + \ str(inst.hazards["struct"]).ljust(10," ") print(result, "\n") print("Total number of access requests for instruction cache:", self.pipeline.access_count) print("Number of instruction cache hits:", self.pipeline.hit_count, "\n") print("Total number of access requests for data cache:", self.pipeline.dcache.access_count) print("Number of data cache hits:", self.pipeline.dcache.hit_count) parser = Parser(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4]) # parser = Parser("inst.txt","data.txt","reg.txt","config.txt") # parser = Parser("test_cases/test_case_1/inst.txt","test_cases/test_case_1/data.txt","test_cases/test_case_1/reg.txt","test_cases/test_case_1/config.txt") # parser = Parser("test_cases/test_case_2/inst.txt","test_cases/test_case_2/data.txt","test_cases/test_case_2/reg.txt","test_cases/test_case_2/config.txt") # parser = Parser("test_cases/test_case_3/inst.txt","test_cases/test_case_3/data.txt","test_cases/test_case_3/reg.txt","test_cases/test_case_3/config.txt") mips_sim = Simulation() mips_sim.set_parser_data(parser) mips_sim.run(300)
image_width = 32 image_channel = 3 class_numbers = 10 #model storage model_checkpoint_path = join( checkpoint_path, 'model.ckpt') train_summary_path = join( checkpoint_path, 'train' ) valid_summary_path = join( checkpoint_path, 'valid' ) ## data loading root_path = '/home/rachakra/few_shot_learning/prepare_data/output' train_tfrecords = join( root_path, 'train_siamese_pair_{0}.tfrecords'.format( sample_per_class ) ) valid_tfrecords = join( root_path, 'siamese_pair_valid.tfrecords' ) ## information for parsing the tfrecord features={'image_one':tf.FixedLenFeature([], tf.string), 'image_two':tf.FixedLenFeature([], tf.string),\ 'label': tf.FixedLenFeature([], tf.int64 )} train_parser = Parser( features, image_height, image_width, True ) valid_parser = Parser( features, image_height, image_width, False ) ##test files training_list_file = 'train_raw_list_{0}.txt'.format( sample_per_class ) class_valid_list = join( root_path, 'class_valid.pickle' )
def __init__(self, *args, **kwargs): super(ParserTest, self).__init__(*args, **kwargs) self.parser = Parser()
from data_parser import Parser parser = Parser() s1, s2, s2 = parser.load_features("text.txt")
return {}, 0 print("============== Jobs Start ==============") api_key = os.environ.get("SARAMIN_KEY") count = 0 page = 0 res, length = load_data(api_key, page) total = int(res["jobs"]["total"]) print("total : {} jobs exist".format(total)) while length: for i in range(length): # progress bar progress_bar(i + count, total, 20) # parser data initialization parser = Parser(res["jobs"]["job"][i]) # scrap company and job parser.scrap_company() parser.scrap_job() page += 1 count += length if length == 100: res, length = load_data(api_key, page) total = int(res["jobs"]["total"]) else: break print("\n============== Jobs Finish ==============") print("============== Routes Start ==============") Route.create_routes() print("\n============== Routes Finish ==============")
def setUp(self) -> None: self.parser = Parser()
import argparse from preprocess import Preprocess from data_parser import Parser import pickle if __name__ == '__main__': parser = argparse.ArgumentParser(description='Prepare data with features and labels') parser.add_argument('-i', type=str, help='data file to prepare') parser.add_argument('-o', type=str, help='output file') parser.add_argument('-v', type=str, default='train.vocab', help='.vocab file for data parser') args = parser.parse_args() pp = Preprocess() dataset = pp.process(args.i, True) # preprocess the data file. parser = Parser(dataset) feature_label_list = parser.process_and_get_features(dataset) # extract tokenized features file = open(args.o, 'w') for feature, label in feature_label_list: str_to_write = ' '.join([parser.idx2token[f] for f in feature]) str_to_write += '\t' + parser.idx2action[label] file.write(str_to_write + '\n') with open(args.v, 'wb') as file2: pickle.dump(parser, file2) file.close() file2.close()