Beispiel #1
0
    def __getitem__(self, index):
        sample_id = int(self.sample_id_list[index])

        if self.mode in ['train', 'val']:
            lidarData = self.get_lidar(sample_id)
            objects = self.get_label(sample_id)
            calib = self.get_calib(sample_id)

            labels, noObjectLabels = kitti_bev_utils.read_labels_for_bevbox(
                objects)

            if not noObjectLabels:
                labels[:, 1:] = transformation.camera_to_lidar_box(
                    labels[:, 1:], calib.V2C, calib.R0,
                    calib.P)  # convert rect cam to velo cord

            if self.data_aug and self.mode == 'train':
                lidarData, labels[:,
                                  1:] = transformation.complex_yolo_pc_augmentation(
                                      lidarData, labels[:, 1:], True)

            b = kitti_bev_utils.removePoints(lidarData, cnf.boundary)
            rgb_map = kitti_bev_utils.makeBVFeature(b, cnf.DISCRETIZATION,
                                                    cnf.boundary)
            target = kitti_bev_utils.build_yolo_target(labels)
            img_file = os.path.join(self.image_dir,
                                    '{:06d}.png'.format(sample_id))

            ntargets = 0
            for i, t in enumerate(target):
                if t.sum(0):
                    ntargets += 1
            # (box_idx, class, y, x, w, l, sin(yaw), cos(yaw))
            targets = torch.zeros((ntargets, 8))
            for i, t in enumerate(target):
                if t.sum(0):
                    targets[i, 1:] = torch.from_numpy(t)

            img = torch.from_numpy(rgb_map).float()

            if self.data_aug:
                if np.random.random() < 0.5:
                    img, targets = self.horizontal_flip(img, targets)

            return img_file, img, targets

        else:
            lidarData = self.get_lidar(sample_id)
            b = kitti_bev_utils.removePoints(lidarData, cnf.boundary)
            rgb_map = kitti_bev_utils.makeBVFeature(b, cnf.DISCRETIZATION,
                                                    cnf.boundary)
            img_file = os.path.join(self.image_dir,
                                    '{:06d}.png'.format(sample_id))
            return img_file, rgb_map
    def load_img_with_targets(self, index):
        """Load images and targets for the training and validation phase"""

        sample_id = int(self.sample_id_list[index])

        lidarData = self.get_lidar(sample_id)
        objects = self.get_label(sample_id)
        calib = self.get_calib(sample_id)

        labels, noObjectLabels = kitti_bev_utils.read_labels_for_bevbox(objects)

        if not noObjectLabels:
            labels[:, 1:] = transformation.camera_to_lidar_box(labels[:, 1:], calib.V2C, calib.R0,
                                                               calib.P)  # convert rect cam to velo cord

        if self.aug_transforms is not None:
            lidarData, labels[:, 1:] = self.aug_transforms(lidarData, labels[:, 1:])

        b = kitti_bev_utils.removePoints(lidarData, cnf.boundary)
        rgb_map = kitti_bev_utils.makeBVFeature(b, cnf.DISCRETIZATION, cnf.boundary)
        target = kitti_bev_utils.build_yolo_target(labels)
        img_file = os.path.join(self.image_dir, '{:06d}.png'.format(sample_id))

        # on image space: targets are formatted as (box_idx, class, x, y, w, l, sin(yaw), cos(yaw))
        n_target = len(target)
        targets = torch.zeros((n_target, 8))
        if n_target > 0:
            targets[:, 1:] = torch.from_numpy(target)

        rgb_map = torch.from_numpy(rgb_map).float()

        if self.hflip_transform is not None:
            rgb_map, targets = self.hflip_transform(rgb_map, targets)

        return img_file, rgb_map, targets
    def load_img_only(self, index):
        """Load only image for the testing phase"""

        sample_id = int(self.sample_id_list[index])
        lidarData = self.get_lidar(sample_id)
        b = kitti_bev_utils.removePoints(lidarData, cnf.boundary)
        rgb_map = kitti_bev_utils.makeBVFeature(b, cnf.DISCRETIZATION, cnf.boundary)
        img_file = os.path.join(self.image_dir, '{:06d}.png'.format(sample_id))

        return img_file, rgb_map
Beispiel #4
0
    def callback(self,data):
        rospy.loginfo("detection")
        with torch.no_grad():
            gen = point_cloud2.read_points(data)
            for idx, p in enumerate(gen):
                print(idx)
                print(p)

            b = kitti_bev_utils.removePoints(gen, cnf.boundary)
            imgs_bev = kitti_bev_utils.makeBVFeature(b, cnf.DISCRETIZATION, cnf.boundary)

            input_imgs = imgs_bev.to(device=configs.device).float()
            t1 = time_synchronized()
            outputs = self.model(input_imgs)
            t2 = time_synchronized()
            detections = post_processing_v2(outputs, conf_thresh=configs.conf_thresh, nms_thresh=configs.nms_thresh)

            img_detections = []  # Stores detections for each image index
            img_detections.extend(detections)

            img_bev = imgs_bev.squeeze() * 255
            img_bev = img_bev.permute(1, 2, 0).numpy().astype(np.uint8)
            img_bev = cv2.resize(img_bev, (configs.img_size, configs.img_size))
            for detections in img_detections:
                if detections is None:
                    continue
                # Rescale boxes to original image
                detections = rescale_boxes(detections, configs.img_size, img_bev.shape[:2])
                for x, y, w, l, im, re, *_, cls_pred in detections:
                    yaw = np.arctan2(im, re)
                    # Draw rotated box
                    kitti_bev_utils.drawRotatedBox(img_bev, x, y, w, l, yaw, cnf.colors[int(cls_pred)])

            img_bev = cv2.flip(cv2.flip(img_bev, 0), 1)
            out_img = img_bev
            cv2.imshow('test-img', out_img)
            cv2.waitKey(1)