def main():
    global solution
    # 创建Data类实例对象
    data = Data('src_data/data.txt')
    # 调用data对象的solution_judge方法,来判断该同余方程组是否有解

    if (data.error_flag):
        if data.solution_judge():
            print("该同余式组有解")
            # 如果有解,则分两种方式求解
            # 先调用crt_judge方法,判断是否可以用中国剩余定理求解
            if data.crt_judge():
                print("该同余式组可以用中国剩余定理")
                sol = "解为: x=%d(mod %d)" % Crt(data).crt_compute()
                print(sol)
                # 将答案写入文件
                with open("src_data/data.txt", "a") as f:
                    f.write("\n" + sol)
                return sol
            # 如果crt_judge方法返回0,则调用nst方法,用一般求解方式进行求解
            else:
                print("该同余式组不可以用中国剩余定理,以一般方法求解")
                sol = "解为: x=%d(mod %d)" % Nst(data).nst_compute()
                print(sol)

                # 将答案写入文件
                with open("src_data/data.txt", "a") as f:
                    f.write("\n" + sol)
                return sol
        else:
            solution = "该同余式组无解"
            print("该同余式组无解")
            return solution
    else:
        return data.solution
Beispiel #2
0
def main():
    equation = []

    if not os.path.exists(dir):
        os.mkdir(dir)
        os.chdir(dir)
        num = int(input("请输入一共有多少个同余方程:"))
        with open('da ta.txt', 'w') as f:
            for i in range(num):
                equation.append(input("请输入第%d个方程:" % i) + "\n")
                f.write(equation[i])
    else:
        print("目录已存在")
        os.chdir(dir)

    data = Data('./data.txt')
    if data.solution_judge():
        print("该同余式组有解")
        if data.crt_judge():
            print("该同余式组可以用中国剩余定理")
            print("解为: x=%d(mod %d)" % Crt(data).crt_compute())
        else:
            print("该同余式组不可以用中国剩余定理,以一般方法求解")
            print("解为: x=%d(mod %d)" % Nst(data).nst_compute())
    else:
        print("该同余式组无解")
        return False
Beispiel #3
0
    def __init__(self, hparams, data_dir):
        self.hparams = hparams
        self.data_dir = data_dir
        #logger
        self._logger = logging.getLogger(__name__)

        #data_process
        self.data_process = Data(self.hparams, self.data_dir)
        (self.char_inputs, self.char_lengths), (self.inputs, self.labels, self.lengths) = \
            self.data_process.load_data()

        #char, id
        self.char2id = self.data_process.char2id
        self.id2char = self.data_process.id2char

        # word, id
        self.word2id = self.data_process.word2id  # dict()
        self.id2word = self.data_process.id2word  # vocabulary

        # label, id
        self.label2id = self.data_process.label2id
        self.id2label = self.data_process.id2label

        # pre-trained word2vec
        with np.load(os.path.join(self.hparams.glove_dir, "glove.6B.300d.trimmed.npz")) as pretrained_data:
            self.word_embeddings = pretrained_data["embeddings"]
            print(np.shape(self.word_embeddings))
    def nst_compute(self):
        for i in range(self.num_equation):
            a, b = prime_Decomposition(self.mod[i])
            self.base2.extend(a)
            self.exponent.extend(b)
            for j in range(len(a)):
                self.remainder2.append(self.remainder[i])
                self.num_equation2 += 1
        # print("********************")
        # print(self.base2)
        # print(self.exponent)
        # print(self.num_equation)
        # print(self.num_equation2)
        # print("********************")
        for i in range(self.num_equation2):
            for j in range(i+1, self.num_equation2):
                if self.base2[i] == self.base2[j]:
                    flag = int(self.exponent[i] > self.exponent[j])
                    c = [self.exponent[j], self.exponent[i]][self.exponent[j] > self.exponent[i]]
                    b = [self.exponent[i], self.exponent[j]][self.exponent[j] > self.exponent[i]]
                    if abs(self.remainder2[i] - self.remainder2[j]) % pow(self.base2[i], c) == 0:
                        if flag:
                            self.remainder3.append(self.remainder2[i])
                        else:
                            self.remainder3.append(self.remainder2[j])
                        self.base3.append(self.base2[i])
                        self.exponent3.append(b)
                        self.num_equation3 += 1
                    else:
                        print("矛盾,该同余式组无解")

        for index, value in enumerate(self.base2):
            if self.base2.count(value) == 1:
                self.remainder3.append(self.remainder2[index])
                self.base3.append(self.base2[index])
                self.exponent3.append(self.exponent[index])
                self.num_equation3 += 1

        # print("&&&&&&&&&&&&&&&&&&&&&&")
        # print(self.base3)
        # print(self.exponent3)
        # print(self.num_equation3)
        # print(self.remainder3)
        # print("&&&&&&&&&&&&&&&&&&&&&&")

        with open("transformed_data.txt", 'w') as f:
            for i in range(self.num_equation3):
                f.write("x=%d(mod%d)\n" % (self.remainder3[i], pow(self.base3[i], self.exponent3[i])))

        transformed_data = Data("./transformed_data.txt")
        if transformed_data.crt_judge():
            print("该同余式组可以用中国剩余定理")
            tcrt = Crt(transformed_data)
            return tcrt.crt_compute()
        else:
            print("以一般方法 递归 求解")
            return Nst(transformed_data).nst_compute()
 def _pre_process(self):
     self.model_file = os.path.join(self.model_dir, 'model.ckpt')
     self.meta_file = os.path.join(self.model_dir, 'model.ckpt.meta')
     var_file = os.path.join(self.model_dir, 'var.pkl')
     with open(var_file, 'rb') as f:
         self.var, self.config = pickle.load(f)
     basic_config = config.basic_config()
     basic_config.__dict__.update(self.config)
     self.config = basic_config
     vocab_file = './data/vocab.txt'
     self.data_tools = Data(vocab_file, None, basic_config, logging)
     self.tokenizer = Tokenizer(logging)
Beispiel #6
0
 def __init__(self):
     config = Config()
     self.emb = UtteranceEmbed(config.word2vec_filename)
     train_dataset = Data(config.train_filename, config.test_filename).train_set
     random.shuffle(train_dataset)
     self.train_dataset = train_dataset[:361]
     self.test_dataset = train_dataset[361:]
     self.cate_mapping_dict = joblib.load(config.cate_mapping_dict)
     self.bow_embed = BowEmbed(self.train_dataset, self.train_dataset, 200)
     
     nb_hidden = 128
     # obs_size = self.emb.dim + self.bow_embed.get_vocab_size()
     obs_size = self.emb.dim
     
     self.memory_net = Memory_net(obs_size, nb_hidden)
Beispiel #7
0
def main(config):
    data = Data(config.train_filename, config.dev_filename,
                config.test_filename)
    train_data = data.train_set
    dev_data = data.dev_set
    test_data = data.test_set

    # load word2vec
    utter_embed = UtteranceEmbed(config.word2vec_filename)

    input_size = (utter_embed.get_vector_size() * 2)  # concat size

    num_neurons = [7500, 7500, 5000, 2500]

    model = Dnn(input_size, num_neurons, 3, utter_embed, config)
    model.build()
    model.train(train_data, dev_data, test_data)
Beispiel #8
0
def predict_score():
    data = Data()
    test_features = feature_extraction(data, "test")
    submission = pd.DataFrame.from_dict({'id': data.test['id']})
    for i in range(len(data.classes)):
        print("Processing " + data.classes[i])
        lr_model_pkl = open(
            '../model/logistic_regression_%s.pkl' % data.classes[i], 'rb')
        lr_model = pickle.load(lr_model_pkl)
        print(
            "Loaded Logistic Regression Model for class %s :: " %
            data.classes[i], lr_model)
        submission[data.classes[i]] = lr_model.predict_proba(test_features)[:,
                                                                            1]
    print(submission.head(5))
    print("Saving output")
    submission.to_csv('../data/output.csv', index=False)
    print("Output saved")
Beispiel #9
0
def create_and_save():
    data = Data()
    train_features = feature_extraction(data, "train")
    scores = []
    # print (train_features.shape)
    # kbest = SelectKBest(chi2, k=1000)
    for i in range(len(data.classes)):
        print("Processing " + data.classes[i])
        train_target = data.train[data.classes[i]]
        # x_feature = kbest.fit_transform(train_features, train_target)
        # print (x_feature)
        classifier = LogisticRegression(solver='sag')
        cv_score = np.mean(
            cross_val_score(classifier,
                            train_features,
                            train_target,
                            cv=3,
                            scoring='roc_auc'))
        # cv_score = np.mean(cross_val_score(classifier, x_feature, train_target, cv=3, scoring='roc_auc'))
        scores.append(cv_score)
        print('CV score for class {} is {}'.format(data.classes[i], cv_score))

        # Calculate ROC_AUC
        roc_auc(train_features, np.array(train_target), data.classes[i])

        print("Creating model for class " + data.classes[i])
        classifier.fit(train_features, train_target)
        # classifier.fit(x_feature, train_target)

        print("Saving model logistic_regression_%s" % data.classes[i])
        lr_pkl_filename = '../model/logistic_regression_%s.pkl' % data.classes[
            i]
        lr_model_pkl = open(lr_pkl_filename, 'wb')
        pickle.dump(classifier, lr_model_pkl)
        lr_model_pkl.close()
        print("Model saved")
    print('Total CV score is {}'.format(np.mean(scores)))
    print("Successfully created and saved all models!")
Beispiel #10
0
            total_loss / data_len, total_acc / data_len))
        np.save(result_src, total_y_pre)
        return y, total_y_pre


if __name__ == "__main__":
    # 模型路径
    model_save_src = "data/model/2_layer_lstm_model"
    num_category = 9
    # 向量化后的数据集
    x_src = "data/vectorized_data/test/x.npy"
    y_src = "data/vectorized_data/test/y.npy"

    result_src = "data/results/rnn_pre.npy"
    vocab_src = "data/middle_result/vocab.npy"
    data = Data()
    vocab, _ = data.load_vocab(vocab_src)

    # 模型
    config = TRNNConfig()
    config.vocab_size = len(vocab)
    model = TextRNN(config)
    # 测试
    print("Begin Testing")
    start_time = time.time()
    y, y_pre = test(x_src, y_src, result_src)
    print("the time is {}".format(get_time_dif(start_time)))

    # 评估
    precision_score, recall_score, f1_val, accuracy = evaluate(y, y_pre)
Beispiel #11
0
def train():
    epochs = 50
    length = 10
    n_units = 128
    n_features = 6
    batch_size = 64

    data = Data(batch_size)
    num_batches = data.num_batches()

    xplaceholder = tf.placeholder(tf.float32, shape=[None, length, n_features])
    yplaceholder = tf.placeholder(tf.float32, shape=[None, 1])
    midPrice_means = tf.placeholder(tf.float32, shape=[None, 1])
    midPrice_stddevs = tf.placeholder(tf.float32, shape=[None, 1])

    #origin midPrice
    origin_midPrice = yplaceholder * midPrice_stddevs + midPrice_means

    pred = lstm_model(xplaceholder, n_units)

    #pred midPrice
    pred_midPrice = pred * midPrice_stddevs + midPrice_means

    loss = tf.losses.mean_squared_error(labels=yplaceholder, predictions=pred)
    tf.summary.scalar('loss', loss)

    accuracy = tf.sqrt(
        tf.losses.mean_squared_error(origin_midPrice, pred_midPrice))
    tf.summary.scalar('accuracy', accuracy)

    step = tf.Variable(0)
    learning_rate = 1e-4
    tf.summary.scalar('learning rate', learning_rate)
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(
        loss, global_step=step)

    merged = tf.summary.merge_all()
    init = tf.global_variables_initializer()

    with tf.Session() as sess:
        sess.run(init)

        train_writer = tf.summary.FileWriter('log', graph=sess.graph)

        saver = tf.train.Saver(max_to_keep=3)

        step_val = None
        for epoch in range(epochs):
            data.reset_batch()
            total_loss = 0.0
            total_acc = 0.0

            for i in range(num_batches):
                batch_inputs, batch_labels, batch_means, batch_stddevs = data.next_batch(
                )
                feed_dict = {
                    xplaceholder: batch_inputs,
                    yplaceholder: batch_labels,
                    midPrice_means: batch_means,
                    midPrice_stddevs: batch_stddevs
                }
                _, loss_val, acc_val, step_val, summary = sess.run(
                    [optimizer, loss, accuracy, step, merged],
                    feed_dict=feed_dict)

                total_acc += acc_val
                total_loss += loss_val

                train_writer.add_summary(summary, global_step=step_val)

            print 'Epoch', epoch, 'train_loss', total_loss / num_batches, 'train_acc', total_acc / num_batches
            '''
            dev_inputs, dev_labels = data.get_dev_data()
            feed_dict = {xplaceholder: dev_inputs, yplaceholder: dev_labels}
            acc_val, loss_val = sess.run([accuracy, loss], feed_dict = feed_dict)
            print 'dev_loss', loss_val, 'dev_acc', acc_val
            '''

        outfile = open('outputs10.csv', 'w')
        outfile.write('midprice\n')
        test_inputs_list, test_means_list, test_stddevs_list = data.get_test_data(
        )
        for i in range(data.test_num_half_day):
            test_means = []
            test_stddevs = []
            test_inputs = test_inputs_list[i]
            mean = test_means_list[i][0]
            stddev = test_stddevs_list[i][0]
            for j in range(len(test_inputs)):
                test_means.append(mean)
                test_stddevs.append(stddev)
            test_inputs = np.asarray(test_inputs)
            test_means = np.asarray(test_means).reshape([-1, 1])
            test_stddevs = np.asarray(test_stddevs).reshape([-1, 1])
            feed_dict = {
                xplaceholder: test_inputs,
                midPrice_means: test_means,
                midPrice_stddevs: test_stddevs
            }
            pred_val = sess.run(pred_midPrice, feed_dict=feed_dict)
            pred_val = np.asarray(pred_val)
            #print pred_val.shape
            for i in range(len(pred_val)):
                outfile.write(str(pred_val[i][0]) + '\n')
        outfile.close()
Beispiel #12
0
            if total_batch - last_improved > require_improvement:
                # 验证集正确率长期不提升,提前结束训练
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break  # 跳出循环
        if flag:  # 同上
            break
    print("the best acc on validation is {}".format(best_acc_val))


if __name__ == '__main__':
    train_dir = "data/vectorized_data/train"
    val_dir = "data/vectorized_data/validation"
    vocab_dir = "data/file_dict/train/vocab.npy"

    save_dir = 'data/model2'

    data_process = Data()

    config = CharCNNConfig()

    if not os.path.exists(vocab_dir):
        data_process.build_vocab(train_dir, vocab_dir)

    words, word_to_id = data_process.load_vocab(vocab_dir)
    config.vocab_size = len(words)

    model = CharCNN(config)
    train()
Beispiel #13
0
class TextClassifier:
    def __init__(self, hparams, data_dir):
        self.hparams = hparams
        self.data_dir = data_dir
        #logger
        self._logger = logging.getLogger(__name__)

        #data_process
        self.data_process = Data(self.hparams, self.data_dir)
        (self.char_inputs, self.char_lengths), (self.inputs, self.labels, self.lengths) = \
            self.data_process.load_data()

        #char, id
        self.char2id = self.data_process.char2id
        self.id2char = self.data_process.id2char

        # word, id
        self.word2id = self.data_process.word2id  # dict()
        self.id2word = self.data_process.id2word  # vocabulary

        # label, id
        self.label2id = self.data_process.label2id
        self.id2label = self.data_process.id2label

        # pre-trained word2vec
        with np.load(os.path.join(self.hparams.glove_dir, "glove.6B.300d.trimmed.npz")) as pretrained_data:
            self.word_embeddings = pretrained_data["embeddings"]
            print(np.shape(self.word_embeddings))

    def _inference(self, inputs: tf.Tensor, lengths: tf.Tensor, char_inputs: tf.Tensor, char_lengths: tf.Tensor):
        print("Building graph for model: Text Classifier")

        # Number of possible output cateIories.
        output_dim = len(self.id2label) # output_dim -> 2
        char_vocab_size = len(self.id2char)

        char_embeddings = tf.get_variable(
            name="char_embeddings",
            shape=[char_vocab_size, self.hparams.char_embedding_dim],
            initializer=tf.initializers.variance_scaling(
                scale=2.0, mode="fan_in", distribution="uniform"
            )
        )

        char_embedded = tf.nn.embedding_lookup(char_embeddings, char_inputs)

        # default shape [batch_size, sentence_time, word_time, char_embedding(50)]
        # reshape [batch_size * sentence_time, word_time, char_embeddings(50)]
        char_embedded = tf.reshape(char_embedded, [-1, tf.shape(char_inputs)[-1], self.hparams.char_embedding_dim])
        # reshape [batch_size * word_time]
        char_lengths = tf.reshape(char_lengths, [-1])

        with tf.variable_scope("char-bi-RNN"):
            char_rnn_cell_forward = rnn.GRUCell(self.hparams.char_embedding_dim)
            char_rnn_cell_backward = rnn.GRUCell(self.hparams.char_embedding_dim)

            if self.hparams.dropout_keep_prob < 1.0:
                char_rnn_cell_forward = rnn.DropoutWrapper(char_rnn_cell_forward,
                                                           output_keep_prob=self._dropout_keep_prob_ph)
                char_rnn_cell_backward = rnn.DropoutWrapper(char_rnn_cell_backward,
                                                            output_keep_prob=self._dropout_keep_prob_ph)

            _, (char_output_fw_states, char_output_bw_states) = \
                tf.nn.bidirectional_dynamic_rnn(
                    char_rnn_cell_forward, char_rnn_cell_backward,
                    inputs=char_embedded,
                    sequence_length=char_lengths,
                    dtype=tf.float32
                )
            char_hiddens = tf.concat([char_output_fw_states, char_output_bw_states], axis=-1)
            char_hiddens = tf.reshape(char_hiddens,
                                  [tf.shape(char_inputs)[0], tf.shape(char_inputs)[1], self.hparams.char_embedding_dim*2])

        word_embeddings = tf.Variable(
            self.word_embeddings,
            name="word_embeddings",
            dtype=tf.float32,
            trainable=True
        )

        ## shape = [batch_size, time, embed_dim]
        word_embedded = tf.nn.embedding_lookup(word_embeddings, inputs)
        char_word_inputs = tf.concat([word_embedded, char_hiddens], axis=-1)

        with tf.variable_scope("bi-RNN"):
            # Build RNN layers
            rnn_cell_forward = rnn.GRUCell(self.hparams.rnn_hidden_dim)
            rnn_cell_backward = rnn.GRUCell(self.hparams.rnn_hidden_dim)

            # Apply dropout to RNN
            if self.hparams.dropout_keep_prob < 1.0:
                rnn_cell_forward = tf.contrib.rnn.DropoutWrapper(rnn_cell_forward,
                                                                 output_keep_prob=self._dropout_keep_prob_ph)
                rnn_cell_backward = tf.contrib.rnn.DropoutWrapper(rnn_cell_backward,
                                                                  output_keep_prob=self._dropout_keep_prob_ph)

            _, (states_fw_final, states_bw_final) = \
                tf.nn.bidirectional_dynamic_rnn(
                rnn_cell_forward, rnn_cell_backward,
                inputs=char_word_inputs,
                sequence_length=lengths,
                dtype=tf.float32
                )

            # shape = [batch_size, rnn_hidden_dim * 2]
            final_hiddens = tf.concat([states_fw_final, states_bw_final], axis=-1)

        with tf.variable_scope("layer_out"):
            layer_out = tf.layers.dense(
                inputs=final_hiddens,
                units=output_dim,
                activation=None,
                kernel_initializer=tf.initializers.variance_scaling(
                    scale=2.0, mode="fan_in", distribution="normal"
                )
            )

        return layer_out

    def make_placeholder(self):

        self.inputs_ph = tf.placeholder(tf.int32, shape=[None, None], name="train_input_ph")
        self.labels_ph = tf.placeholder(tf.int32, shape=[None], name="train_label_ph")
        self.lengths_ph = tf.placeholder(tf.int32, shape=[None], name="train_lengths_ph")

        #[batch_size, word_time, char_time]
        self.char_inputs_ph = tf.placeholder(tf.int32, shape=[None, None, None], name="char_input_ph")
        self.char_lengths_ph = tf.placeholder(tf.int32, shape=[None, None], name="char_lengths_ph")

        self._dropout_keep_prob_ph = tf.placeholder(tf.float32, shape=[], name="dropout_keep_prob")

    def make_feed_dict(self, batch_data):
        feed_dict = {}
        batch_inputs, batch_labels, batch_lengths, batch_char_inputs, batch_char_lengths = batch_data

        # word-level
        feed_dict[self.inputs_ph] = batch_inputs
        feed_dict[self.labels_ph] = batch_labels
        feed_dict[self.lengths_ph] = batch_lengths

        # char-level
        feed_dict[self.char_inputs_ph] = batch_char_inputs
        feed_dict[self.char_lengths_ph] = batch_char_lengths
        feed_dict[self._dropout_keep_prob_ph] = self.hparams.dropout_keep_prob

        return feed_dict

    def build_graph(self):

        self.global_step = tf.Variable(0, name='global_step', trainable=False)
        # logits
        with tf.variable_scope("inference", reuse=False):
            logits = self._inference(self.inputs_ph, self.lengths_ph, self.char_inputs_ph, self.char_lengths_ph)

        with tf.name_scope("cross_entropy"):
            loss_op = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=self.labels_ph,
                                                                     name="cross_entropy")
            self.loss_op = tf.reduce_mean(loss_op, name='cross_entropy_mean')
            self.train_op = tf.train.AdamOptimizer().minimize(loss_op, global_step=self.global_step)

        eval = tf.nn.in_top_k(logits, self.labels_ph, 1)
        correct_count = tf.reduce_sum(tf.cast(eval, tf.int32))
        with tf.name_scope("accuracy"):
            self.accuracy = tf.divide(correct_count, tf.shape(self.labels_ph)[0])

    def train(self):
        sess = tf.Session()

        with sess.as_default():
            global_step = tf.Variable(0, name='global_step', trainable=False)

            # build placeholder
            self.make_placeholder()
            # build train graph
            self.build_graph()

            # checkpoint file saver
            saver = tf.train.Saver()

            # get data
            inputs_id, labels_id, chars_id = \
                self.data_process.data_id(self.inputs, self.labels, self.char_inputs)

            total_batch = int(len(inputs_id) / self.hparams.batch_size) + 1
            tf.global_variables_initializer().run()
            for epochs_completed in range(self.hparams.num_epochs):

                for iter in range(total_batch):
                    batch_data = self.data_process.get_batch_data(inputs_id, labels_id, self.lengths,
                                                                  chars_id, self.char_lengths,
                                                                  iter, self.hparams.batch_size)

                    accuracy_val, loss_val, global_step_val, _ = sess.run(
                        [self.accuracy, self.loss_op, self.global_step, self.train_op],
                        feed_dict=self.make_feed_dict(batch_data)
                    )

                    if global_step_val % 10 == 0:
                        self._logger.info("[Step %d] loss: %.4f, accuracy: %.2f%%" % (
                            global_step_val, loss_val, accuracy_val * 100))

                self._logger.info("End of epoch %d." % (epochs_completed + 1))
                save_path = saver.save(sess, os.path.join(self.hparams.root_dir,
                                                          "saves_%s/model.ckpt" % (self.hparams.model)),
                                       global_step=global_step_val)
                self._logger.info("Model saved at: %s" % save_path)
Beispiel #14
0
from data_process import Data


if __name__ == '__main__':
    target_data = Data()
    path = ".././source/origin_source/C1_data.xlsx"
    # 首先还原出我原先版本的结构
    # 最少要读入5行数据,否则会报错
    # 首先处理500的数据量级

    target_data.classfing_all_data()
    '''
    nrows = 5000

    # 数据读入并设置基本参数
    target_data.reset()
    target_data.store_data_with_can_matrix_for_single_canid(path, nrows)
    target_data.set_data_length()

    # 进行分类
    target_data.initial_classfy_data()
    target_data.process_classfy_data()

    # 贪心算法求最优解
    target_data.greedy_find_solution()

    # 显示
    target_data.show_results()
    # target_data.check_sensor_or_counter()
    target_data.show_counter()
    target_data.show_sensor()
 def nst_compute(self):
     # 首先对同余式方程组的模进行质数分解(调用prime_Decomposition函数)
     # 质数分解获得模的标准分解式,然后构成了第二套等价的方程组
     for i in range(self.num_equation):
         a, b = prime_Decomposition(self.mod[i])
         self.base2.extend(a)
         self.exponent.extend(b)
         for j in range(len(a)):
             self.remainder2.append(self.remainder[i])
             self.num_equation2 += 1
     # 双重循环遍历因数分解后的同余方程式组
     # 这一步将使同余式方程组符合中国剩余定理
     for i in range(self.num_equation2):
         for j in range(i + 1, self.num_equation2):
             if self.base2[i] == self.base2[j]:
                 # flag为了标记第i项和第j项指数到底是谁比较大
                 flag = int(self.exponent[i] > self.exponent[j])
                 # c为指数较小项
                 # b为较大指数项
                 c = [self.exponent[j], self.exponent[i]
                      ][self.exponent[j] >= self.exponent[i]]
                 b = [self.exponent[i],
                      self.exponent[j]][self.exponent[j] > self.exponent[i]]
                 # 判别条件:(base^c)|余数差
                 if abs(self.remainder2[i] - self.remainder2[j]) % pow(
                         self.base2[i], c) == 0:
                     # 按条件扩充余数列表
                     if flag:
                         self.remainder3.append(self.remainder2[i])
                     else:
                         self.remainder3.append(self.remainder2[j])
                     # 按条件扩充底数,指数,并且方程个数增加一
                     self.base3.append(self.base2[i])
                     self.exponent3.append(b)
                     self.num_equation3 += 1
                 else:
                     print("矛盾,该同余式组无解")
                     exit()
     # 将同余方程式组中落单的方程添加到最终方程组中
     # 使用了enumerate函数,使用列表的count方法,
     # 若某项只出现一次,用该索引值获取该项值,并添加到相应列表中
     for index, value in enumerate(self.base2):
         if self.base2.count(value) == 1:
             self.remainder3.append(self.remainder2[index])
             self.base3.append(self.base2[index])
             self.exponent3.append(self.exponent[index])
             self.num_equation3 += 1
     # 创建新文件,构造最终方程式组并将该方程式组放入txt文件中,
     # 这样就可以用该路径创建新的数据对象
     # 到此为止,历尽千辛万苦构造的新同余式方程组就可能满足中国剩余定理了,如果满足,只要调用crt类即可
     with open("src_data/transformed_data.txt", 'w') as f:
         for i in range(self.num_equation3):
             f.write("x=%d(mod%d)\n" %
                     (self.remainder3[i],
                      pow(self.base3[i], self.exponent3[i])))
     # 构造Data对象
     transformed_data = Data("src_data/transformed_data.txt")
     # 调用crt_judge方法,若返回1,则说明经过一轮转化已经满足中国剩余定理
     if transformed_data.crt_judge():
         tcrt = Crt(transformed_data)
         return tcrt.crt_compute()
     # 如果crt_judge方法返回0,则说明经过一轮转化并不转化成满足中国剩余定理形式,但已经更接近中国剩余定理条件
     # 此时则需要进行递归运算,将此时的transformed_data再次传入nst,进行新的一轮三部转化
     else:
         print("以一般方法 递归 求解")
         return Nst(transformed_data).nst_compute()