def annotate_tweets_ds(
        cls,
        dict_ds: dict,
        store: bool = False,
        dirpath: str = (r"..\..\Datasets\twitter-sars-cov-2"
                        "\\annotated\\")
    ) -> dict:
        # TODO: find a way to check store once not twice without recoding
        # If we want to store the results and the provided directory is invalid
        # then exit
        if store:
            if not dtls.isready_dirpath(dirpath):
                raise IOError(
                    f"Provided storage destination '{dirpath}' is not valid")
        # Either we don't want to store, or the storage destination is valid
        for k, ds in dict_ds.items():
            ds["five_g"] = cls.label_tweets(ds.text, mode=cls.G5)
            logger.info(f"Dataset {k} annotated with 5G labels")
            if store:
                fpath = f"{dirpath}\\annotated_{k}"
                ds.to_csv(path_or_buf=fpath,
                          sep=",",
                          index=False,
                          encoding="utf-8")
                logger.info(f"Annotated dataset {k} saved to disk")

        return dict_ds
Beispiel #2
0
    def init_ui(self):
        """
            Initializes the top-level tab widget and all sub tabs ("Data", "Training", "Testing")
        """
        self.setGeometry(0, 0, 1100, 800)
        self.setWindowTitle('Myo Tools')
        self.setObjectName("TopWidget")
        self.setStyleSheet("#TopWidget {background-color: white;}")

        #
        # Top-level layout
        #
        tools_layout = QVBoxLayout()
        self.tool_tabs = QTabWidget()

        # Fancy styling
        tab_widgets = self.tool_tabs.findChild(QStackedWidget)
        tab_widgets.setObjectName("TabWidgets")
        tools_layout.addWidget(self.tool_tabs)
        top_tabs = self.tool_tabs.findChild(QTabBar)
        top_tabs.setObjectName("TopTabs")
        self.tool_tabs.setStyleSheet(
            "QTabBar#TopTabs::tab {font-weight: bold; height:35px; width: 150px; border-radius: 3px; "
            "                   border: 2px solid #bbbbbb; background-color:#dddddd;}"
            "QStackedWidget#TabWidgets {background-color: #eeeeee;}")
        self.tool_tabs.currentChanged.connect(self.on_tab_changed)
        self.cur_index = 0

        self.data_tools_tab = DataTools(self.on_device_connected,
                                        self.on_device_disconnected,
                                        self.is_data_tools_open)
        self.online_training_tab = OnlineTraining(
            self.data_tools_tab.data_collected)
        self.online_pred_tab = OnlineTesting(
            self.data_tools_tab.data_collected)

        self.tool_tabs.addTab(self.data_tools_tab, "Data Collection")
        self.tool_tabs.addTab(self.online_training_tab, "Online Training")
        self.tool_tabs.addTab(self.online_pred_tab, "Online Predictions")

        self.setLayout(tools_layout)
        self.show()
Beispiel #3
0
def main():
    #prepare args
    args = getArgs()
    print("Train CUDA: {}, Test CUDA: {}, Batch Size: {}".format(args.use_cuda_train, args.use_cuda_test, args.batch_size))

    #init stuff
    torch.manual_seed(args.seed)
    model = Net()

    #load data
    with utils.MeasureBlockTime("Data loading (s): "):
        train_loader, test_loader = DataTools.getDataLoaders(args)
    print("Train: {}, Test:{}, Train batches: {}, Test batches:{}".format(
        len(train_loader.dataset), len(test_loader.dataset), len(train_loader), len(test_loader)))
    train_test = TrainTest(model, args.lr, args.momentum, args.device_train, args.device_test)    
    probe = DebugProbe(train_test, "test_exp")

    #train model
    train_test.train_model(args.epochs, train_loader, test_loader)
 def __init__(self):
     dt = DataTools()
     self.ys, self.tokenMatrix, self.positionMatrix1, self.positionMatrix2, self.sdpMatrix = dt.get_data("pkl/test.pkl.gz")
Beispiel #5
0

args = parse()
print(args)

args.lr_base = args.lr
args.betas = (args.beta1, args.beta2)

os.makedirs(join('output', args.experiment_name), exist_ok=True)
os.makedirs(join('output', args.experiment_name, 'checkpoint'), exist_ok=True)
os.makedirs(join('output', args.experiment_name, 'sample_training'),
            exist_ok=True)
with open(join('output', args.experiment_name, 'setting.txt'), 'w') as f:
    f.write(json.dumps(vars(args), indent=4, separators=(',', ':')))

data_tools = DataTools()
transformed_training_dataset = data_tools.transformed_training_data

# load training data in batches
batch_size = args.batch_size
num_workers = args.num_workers
train_loader = DataLoader(transformed_training_dataset,
                          batch_size=batch_size,
                          shuffle=True,
                          num_workers=num_workers)

# Define the loss and optimization
lr = args.lr
criterion = nn.SmoothL1Loss()
optimizer = optim.Adam(net.parameters(), lr=lr)
Beispiel #6
0
class TopLevel(QWidget):
    """
        Main window containing all GUI components.
    """

    #
    # Used to cleanup background worker thread(s) (on exit)
    #
    class Exit(QObject):
        exitClicked = pyqtSignal()

    def closeEvent(self, event):
        self.close_event.exitClicked.emit()

    def __init__(self):
        super().__init__()

        self.close_event = self.Exit()  # Thread cleanup on exit
        self.close_event.exitClicked.connect(self.stop_background_workers)

        # Configurable
        self.worker_check_period = 1  # seconds

        self.init_ui()

    def init_online_pred_tab(self):
        """
            Initializes UI elements in the "Online Predictions" tab

        :return: (QWidget) online_training_tab
        """
        online_pred_tab = QWidget()
        return online_pred_tab

    def init_ui(self):
        """
            Initializes the top-level tab widget and all sub tabs ("Data", "Training", "Testing")
        """
        self.setGeometry(0, 0, 1100, 800)
        self.setWindowTitle('Myo Tools')
        self.setObjectName("TopWidget")
        self.setStyleSheet("#TopWidget {background-color: white;}")

        #
        # Top-level layout
        #
        tools_layout = QVBoxLayout()
        self.tool_tabs = QTabWidget()

        # Fancy styling
        tab_widgets = self.tool_tabs.findChild(QStackedWidget)
        tab_widgets.setObjectName("TabWidgets")
        tools_layout.addWidget(self.tool_tabs)
        top_tabs = self.tool_tabs.findChild(QTabBar)
        top_tabs.setObjectName("TopTabs")
        self.tool_tabs.setStyleSheet(
            "QTabBar#TopTabs::tab {font-weight: bold; height:35px; width: 150px; border-radius: 3px; "
            "                   border: 2px solid #bbbbbb; background-color:#dddddd;}"
            "QStackedWidget#TabWidgets {background-color: #eeeeee;}")
        self.tool_tabs.currentChanged.connect(self.on_tab_changed)
        self.cur_index = 0

        self.data_tools_tab = DataTools(self.on_device_connected,
                                        self.on_device_disconnected,
                                        self.is_data_tools_open)
        self.online_training_tab = OnlineTraining(
            self.data_tools_tab.data_collected)
        self.online_pred_tab = OnlineTesting(
            self.data_tools_tab.data_collected)

        self.tool_tabs.addTab(self.data_tools_tab, "Data Collection")
        self.tool_tabs.addTab(self.online_training_tab, "Online Training")
        self.tool_tabs.addTab(self.online_pred_tab, "Online Predictions")

        self.setLayout(tools_layout)
        self.show()

    def is_data_tools_open(self):
        return self.cur_index == 0

    def on_device_connected(self, address, rssi, battery_level):
        """
            Called on user initiated connection

        :param address: MAC address of connected Myo device
        """
        self.online_pred_tab.device_connected(address, rssi, battery_level)
        self.online_training_tab.device_connected(address, rssi, battery_level)

    def on_device_disconnected(self, address):
        """
            Called on user initiated disconnect, or unexpected disconnect

        :param address: MAC address of disconnected Myo device
        """
        self.online_pred_tab.device_disconnected(address)
        self.online_training_tab.device_disconnected(address)

    def on_tab_changed(self, value):
        """
            Intercepts a user attempting to switch tabs (to ensure a valid tab switch is taking place)

            value: Desired tab index to switch to
        """
        if self.cur_index == value:
            return
        valid_switch = False

        #
        # Determine if we can switch
        #
        data_tool_idx = 0
        online_train_idx = 1
        online_pred_idx = 2

        if self.cur_index == data_tool_idx:
            #
            # Check for incomplete Myo search workers
            #
            waiting_on_search = False
            for worker in self.data_tools_tab.search_threads:
                if not worker.complete:
                    waiting_on_search = True
                    break

            if not waiting_on_search:

                #
                # Check for background data workers
                #

                # worker_running  = False
                # num_widgets     = self.data_tools_tab.ports_found.count()
                #
                # for idx in range(num_widgets):
                #     # Ignore port widgets (only interested in Myo device rows)
                #     list_widget = self.data_tools_tab.ports_found.item(idx)
                #     if hasattr(list_widget, "port_idx"):
                #         continue
                #
                #     myo_widget = self.data_tools_tab.ports_found.itemWidget(list_widget)
                #     if not (myo_widget.worker is None):
                #         if not myo_widget.worker.complete:
                #             worker_running = True
                #             break
                worker_running = False

                if not worker_running:

                    #
                    # Close the background video worker if appropriate
                    #

                    # if not self.data_tools_tab.gt_helper_open:
                    #     if not (self.data_tools_tab.gt_helper.worker is None):
                    #         self.data_tools_tab.gt_helper.stop_videos()
                    #
                    #         while not (self.data_tools_tab.gt_helper.worker.complete):
                    #             time.sleep(self.worker_check_period)
                    #
                    #     #
                    #     # IF we make it here, the switch is valid (for the case of the data tools tab)
                    #     #
                    #     valid_switch = True
                    # else:
                    #     self.warn_user("Please close GT Helper first.")

                    valid_switch = True

                else:
                    self.warn_user(
                        "Please close connection to Myo devices first.")
            else:
                self.warn_user(
                    "Please wait for Myo device search to complete first.")

        #
        # To control switching out of online training / testing
        #
        elif self.cur_index == online_train_idx:
            valid_switch = True
        elif self.cur_index == online_pred_idx:
            valid_switch = True

        if valid_switch:
            self.cur_index = value
        else:
            self.tool_tabs.setCurrentIndex(self.cur_index)

    def stop_background_workers(self):
        """
            This function is called on (user click-initiated) exit of the main window.
        """
        self.data_tools_tab.stop_data_tools_workers()

    def warn_user(self, message):
        """
            Generates a pop-up warning message

        :param message: The text to display
        """
        self.warning = QErrorMessage()
        self.warning.showMessage(message)
        self.warning.show()
Beispiel #7
0
 def __init__(self):
     dt = DataTools()
     self.ys, self.tokenMatrix, self.positionMatrix1, self.positionMatrix2, self.sdpMatrix = dt.get_data(
         "./pkl/final_test.pkl.gz")
     print(self.ys.shape[0])
 def __init__(self):
     self.dt = DataTools()
class KejModel(object):

    WORD_DIM = 250
    CLASS_DIM = 30
    NUM_CLASSES = 11
    MAX_SENTENCE_LEN = 100
    multiple = 1.0

    dt = None
    relationsMapping = {
        'other': 0,
        'locaA': 1,
        'locAa': 2,
        'med-ill': 3,
        'ill-med': 4,
        "clsaA": 5,
        "clsAa": 6,
        "w-c": 7,
        "c-w": 8,
        "cs-ef": 9,
        "ef-cs": 10
    }
    idx2relation = {
        0: 'other',
        1: 'locaA',
        2: 'locAa',
        3: 'med-ill',
        4: 'ill-med',
        5: "clsaA",
        6: "clsAa",
        7: "w-c",
        8: "c-w",
        9: "cs-ef",
        10: "ef-cs"
    }

    def __init__(self):
        self.dt = DataTools()

    def load_kej_model(self, modelpath):
        model = load_model(modelpath)
        print(model.summary())
        return model

    def build_new_model(self,
                        n_out,
                        max_sentence_len,
                        max_position,
                        embedding,
                        printflag=False):
        print("build new model")
        num_filter = 140
        filter_length = 3
        position_dims = 80
        print(max_sentence_len)

        words_input = Input(shape=(max_sentence_len, ),
                            dtype='int32',
                            name='words_input')
        # words = Embedding(70000, self.WORD_DIM)(words_input)
        words = embedding(words_input)
        # if printflag:
        #     print(words)

        # sdp_input = Input(shape=(max_sentence_len,), dtype='float32', name='sdp_input')

        distance1_input = Input(shape=(max_sentence_len, ),
                                dtype='int32',
                                name='distance1_input')
        distance1 = Embedding(max_position, position_dims)(distance1_input)
        print(distance1)

        distance2_input = Input(shape=(max_sentence_len, ),
                                dtype='int32',
                                name='distance2_input')
        distance2 = Embedding(max_position, position_dims)(distance2_input)
        print(distance2)

        output = concatenate([words, distance1, distance2])

        output = Convolution1D(filters=num_filter,
                               kernel_size=filter_length,
                               padding='same',
                               activation='relu',
                               strides=1)(output)
        print(output)

        output = GlobalMaxPooling1D()(output)
        print(output)

        output = Dropout(0.25)(output)
        output = Dense(50, activation='relu')(output)
        output = Dropout(0.25)(output)
        output = Dense(n_out, activation='softmax')(output)

        # model = Model(inputs = [sdp_input, words_input,distance1_input,distance2_input],outputs=[output])
        model = Model(inputs=[words_input, distance1_input, distance2_input],
                      outputs=[output])
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer='Adam',
                      metrics=['accuracy'])
        return model

    def train_model(self,
                    tosave,
                    savepath,
                    num_epoch=20,
                    batch_size=64,
                    load=True):
        ys, tokenMatrix, positionMatrix1, positionMatrix2, sdpMatrix = self.dt.get_data(
            'pkl/train.pkl.gz')
        n_out = max(ys) + 1
        max_sentence_len = tokenMatrix.shape[1]
        print(max_sentence_len)
        max_position = max(np.max(positionMatrix1),
                           np.max(positionMatrix2)) + 1
        if load:
            model = load_model('model/kej_model.h5')
        else:
            genmodel = GenModels.Word2Vec.load("w2vmodel/word2vec2.model")
            embedding = genmodel.wv.get_keras_embedding(False)
            model = self.build_new_model(n_out, max_sentence_len, max_position,
                                         embedding)
        print("Start training")
        max_prec, max_rec, max_acc, max_f1 = 0, 0, 0, 0
        # for epoch in range(num_epoch):
        model.fit([tokenMatrix, positionMatrix1, positionMatrix2],
                  ys,
                  batch_size=batch_size,
                  verbose=True,
                  epochs=num_epoch)
        if tosave:
            model.save(savepath)
            print("保存成功")

    def predict_classes(self, prediction):
        return prediction.argmax(axis=-1)

    def model_predict(self, testpkl_path, model_path='model/kej_model.h5'):
        ys, tokenMatrix, positionMatrix1, positionMatrix2, sdpMatrix = self.dt.get_data(
            testpkl_path)
        model = load_model(model_path)
        pred_test = self.predict_classes(
            model.predict([tokenMatrix, positionMatrix1, positionMatrix2],
                          verbose=False))
        acc = np.sum(pred_test == ys) / float(len(ys))
        print("测试样例数量: " + str(len(ys)))
        print("准确率: " + str(acc))
        print("错误样例:")
        wrong_outputs = []
        for i in range(len(ys)):
            if pred_test[i] != ys[i]:
                wrong_outputs.append(
                    str(i) + " " + self.idx2relation[ys[i]] + " " +
                    self.idx2relation[pred_test[i]])
        for item in wrong_outputs:
            print(item)

    def model_predict_one(self, model, relationidx, positionMatrix1,
                          positionMatrix2, tokenMatrix):
        pred_test = self.predict_classes(
            model.predict([tokenMatrix, positionMatrix1, positionMatrix2],
                          verbose=False))
        print(self.idx2relation[pred_test[0]])
Beispiel #10
0
def main():
    logger.info("Main Module Start")
    # Location where the original tweets are
    master_folder = f"{datasets_folder}\\pruned"

    if prune_tweets:
        # If the tweet csvs still contain retweets, clean them
        logger.info("You've chosen to prune the files. Pruning..")
        # Make a dictionary of <filepaths, whether it's hydrator schema>
        dpaths = {}
        dpaths["200201"] = ((f"{datasets_folder}\\ids_2020-02-01\\"
                             "Rehydrate_tweets_2020-02-01.csv"), True)
        dpaths["200215"] = ((f"{datasets_folder}\\ids_2020-02-15\\"
                              "tweets_2020-02-15.csv"), True)
        dpaths["200301"] = ((f"{datasets_folder}\\ids_2020-03-01\\"
                             "rehydrated_tweets_20200301.csv"), False)
        dpaths["200401"] = ((f"{datasets_folder}\\ids_2020-04-01\\"
                              "rehydrated_tweets_20200401.csv"), True)
        dpaths["200501"] = ((f"{datasets_folder}\\ids_2020-05-01\\"
                              "tweets_20200501.csv"), True)
        dpaths["200315"] = ((f"{datasets_folder}\\ids_2020-03-15\\"
                              "tweets_2020-03-15.csv"), True)
        dpaths["200415"] = ((f"{datasets_folder}\\ids_2020-04-15\\"
                              "tweets_2020-04-15.csv"), True)
        # Add the older tweets
        # Keys are 7 chars long and for older datasets
        # dpaths["200201o"] = ((f"{datasets_folder}\\ids_2020-02-01\\"
        #                       "tweets_20200201.csv"), True)
        # dpaths["200301o"] = ((f"{datasets_folder}\\ids_2020-03-01\\"
        #                      "tweets_20200301.csv"), True)
        try:
            DataTools.prune_retweets_clean_to_csv(csv_files=dpaths,
                                                  dirpath=master_folder,
                                                  only_eng=True)
        except Exception:
            logger.exception("exception raised")

    logger.info("Pruning phase ended.")

    if not resave_5g_tagged_tweets:
        exit(0)

    # append pruned to the master path and proceed:
    dfs = {}
    # Load the four datasets for pruning and saving
    with DataTools.scan_directory(master_folder) as docs:
        for doc in docs:
            dfs[doc.name] = DataTools.load_tweets_ds(csv_fpath=doc.path,
                                                     already_pruned=True,
                                                     hydrator_file=True,
                                                     remove_retweets=False)
            logger.info(f"File {doc.name} loaded into a dataframe")

    # Annotate tweets with 5G labels in five_g columns
    logger.info("Annotating tweets with 5G labels")
    dfs = ConspiracyDetector.annotate_tweets_ds(dict_ds=dfs,
                                                store=resave_5g_tagged_tweets)

    logger.info("Annotation of 5G finished")
    logger.info("Main Module End.")
    logger.shutdown()
Beispiel #11
0
class KejModel(object):

    WORD_DIM = 250
    CLASS_DIM = 30
    NUM_CLASSES = 11
    MAX_SENTENCE_LEN = 100
    multiple = 1.0

    dt = None
    relationsMapping = {
        'other': 0,
        'locaA': 1,
        'locAa': 2,
        'med-ill': 3,
        'ill-med': 4,
        "clsaA": 5,
        "clsAa": 6,
        "w-c": 7,
        "c-w": 8,
        "cs-ef": 9,
        "ef-cs": 10
    }
    idx2relation = {
        0: 'other',
        1: 'locaA',
        2: 'locAa',
        3: 'med-ill',
        4: 'ill-med',
        5: "clsaA",
        6: "clsAa",
        7: "w-c",
        8: "c-w",
        9: "cs-ef",
        10: "ef-cs"
    }

    def __init__(self):
        self.dt = DataTools()

    def load_kej_model(self, modelpath):
        return load_model(modelpath)

    def build_new_model(self,
                        n_out,
                        max_sentence_len,
                        max_position,
                        embedding,
                        printflag=False):
        print("build new model")
        num_filter = 140
        filter_length = 3
        position_dims = 80
        print(max_sentence_len)

        words_input = Input(shape=(max_sentence_len, ),
                            dtype='int32',
                            name='words_input')
        # words = Embedding(70000, self.WORD_DIM)(words_input)
        words = embedding(words_input)
        # if printflag:
        #     print(words)

        sdp_input = Input(shape=(max_sentence_len, ),
                          dtype='float32',
                          name='sdp_input')
        print(sdp_input)
        # K.variable(K.random_uniform(self.))
        init_att = math.sqrt(6.0 / (self.WORD_DIM + self.CLASS_DIM))
        U = K.variable(K.random_uniform([self.WORD_DIM, self.CLASS_DIM],
                                        minval=-init_att,
                                        maxval=init_att,
                                        dtype=tf.float32),
                       name="U")
        classes_matrix = K.variable(K.random_uniform(
            [self.CLASS_DIM, self.NUM_CLASSES], dtype=tf.float32),
                                    name="classmatrix")
        G = tf.matmul(tf.reshape(words, [-1, self.WORD_DIM]), U, name="G")
        print(G)

        G = tf.reshape(tf.matmul(G, classes_matrix),
                       [-1, self.MAX_SENTENCE_LEN, self.NUM_CLASSES],
                       name="G")
        print(G)

        init_m = math.sqrt(6.0 / (self.MAX_SENTENCE_LEN + self.NUM_CLASSES))
        M = tf.Variable(tf.random_uniform(
            [self.MAX_SENTENCE_LEN, self.NUM_CLASSES],
            minval=-init_m,
            maxval=init_m,
            dtype=tf.float32),
                        name="M")
        alpha = tf.expand_dims(tf.matmul(sdp_input, M), axis=1, name="alpha")
        print(alpha)
        alpha = tf.matmul(alpha, tf.transpose(G, [0, 2, 1]), name="alpha")
        print(alpha)
        alpha = tf.nn.l2_normalize(tf.squeeze(alpha, axis=1),
                                   axis=-1,
                                   name="alpha")
        print(alpha)

        alpha_v = tf.add(sdp_input,
                         tf.scalar_mul(self.multiple, alpha),
                         name="alpha_v")
        alpha = tf.matrix_diag(alpha_v, name="alpha")
        print(alpha)
        weighted_data = tf.matmul(alpha, words, name="weighted_data")
        print(weighted_data)

        distance1_input = Input(shape=(max_sentence_len, ),
                                dtype='int32',
                                name='distance1_input')
        distance1 = Embedding(max_position, position_dims)(distance1_input)
        print(distance1)

        distance2_input = Input(shape=(max_sentence_len, ),
                                dtype='int32',
                                name='distance2_input')
        distance2 = Embedding(max_position, position_dims)(distance2_input)
        print(distance2)

        # my_concat = Lambda(lambda x: K.concatenate([x[0], x[1],x[2],x[3]], axis=-1))
        # output = my_concat([words,distance1,distance2,alpha])
        outputtemp = tf.concat([words, distance1, distance2], axis=2)
        # outputtemp = concatenate([words,distance1,distance2])
        print(outputtemp)

        output = Convolution1D(filters=num_filter,
                               kernel_size=filter_length,
                               padding='same',
                               activation='relu',
                               strides=1)(outputtemp)
        print(output)

        output = GlobalMaxPooling1D()(output)
        print(output)

        output = Dropout(0.25)(output)
        output = Dense(50, activation='relu')(output)
        output = Dropout(0.25)(output)
        output = Dense(n_out, activation='softmax')(output)

        model = Model(
            inputs=[sdp_input, words_input, distance1_input, distance2_input],
            outputs=[output])
        model.compile(loss='sparse_categorical_crossentropy',
                      optimizer='Adam',
                      metrics=['accuracy'])
        return model

    def train_model(self,
                    tosave,
                    savepath,
                    num_epoch=20,
                    batch_size=64,
                    load=True):
        ys, tokenMatrix, positionMatrix1, positionMatrix2, sdpMatrix = self.dt.get_data(
            'pkl/train2.pkl.gz')
        n_out = max(ys) + 1
        max_sentence_len = tokenMatrix.shape[1]
        print(max_sentence_len)
        max_position = max(np.max(positionMatrix1),
                           np.max(positionMatrix2)) + 1
        if load:
            model = load_model('model/kej_model.h5')
        else:
            genmodel = GenModels.Word2Vec.load("w2vmodel/word2vec2.model")
            embedding = genmodel.wv.get_keras_embedding(False)
            model = self.build_new_model(n_out, max_sentence_len, max_position,
                                         embedding)
        print("Start training")
        max_prec, max_rec, max_acc, max_f1 = 0, 0, 0, 0
        # for epoch in range(num_epoch):
        model.fit([sdpMatrix, tokenMatrix, positionMatrix1, positionMatrix2],
                  ys,
                  batch_size=batch_size,
                  verbose=True,
                  epochs=num_epoch)
        if tosave:
            model.save(savepath)
            print("保存成功")

    def predict_classes(self, prediction):
        return prediction.argmax(axis=-1)

    def model_predict(self, testpkl_path, model_path='model/kej_model.h5'):
        ys, tokenMatrix, positionMatrix1, positionMatrix2 = self.dt.get_data(
            testpkl_path)
        model = load_model(model_path)
        pred_test = self.predict_classes(
            model.predict([tokenMatrix, positionMatrix1, positionMatrix2],
                          verbose=False))
        acc = np.sum(pred_test == ys) / float(len(ys))
        print("测试样例数量: " + str(len(ys)))
        print("准确率: " + str(acc))
        print("错误样例:")
        wrong_outputs = []
        for i in range(len(ys)):
            if pred_test[i] != ys[i]:
                wrong_outputs.append(
                    str(i) + " " + self.idx2relation[ys[i]] + " " +
                    self.idx2relation[pred_test[i]])
        for item in wrong_outputs:
            print(item)

    def model_predict_one(self, model, relationidx, positionMatrix1,
                          positionMatrix2, tokenMatrix):
        pred_test = self.predict_classes(
            model.predict([tokenMatrix, positionMatrix1, positionMatrix2],
                          verbose=False))
        print(self.idx2relation[pred_test[0]])