Beispiel #1
0
def main():
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('data', metavar='DIR', help='path to dataset')
    parser.add_argument('--batch-size',
                        type=int,
                        default=128,
                        metavar='N',
                        help='input batch size for training (default: 128)')
    parser.add_argument('--batch-size-val',
                        type=int,
                        default=64,
                        metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--epochs',
                        type=int,
                        default=1000,
                        metavar='N',
                        help='number of epochs to train (default: 1000)')
    parser.add_argument('--lr',
                        type=float,
                        default=1e-4,
                        metavar='LR',
                        help='learning rate (default: 1e-4)')
    parser.add_argument('--image-size',
                        type=float,
                        default=80,
                        metavar='IMSIZE',
                        help='input image size (default: 80)')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--multi-gpu',
                        action='store_true',
                        default=False,
                        help='parallel training on multiple GPUs')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--save-model',
                        action='store_true',
                        default=False,
                        help='For Saving the current Model')
    parser.add_argument('--model-save-path',
                        default='',
                        type=str,
                        metavar='PATH',
                        help='For Saving the current Model')
    parser.add_argument('--resume',
                        default='',
                        type=str,
                        metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    args = parser.parse_args()

    torch.set_default_tensor_type('torch.FloatTensor')

    device = torch.device("cpu" if args.no_cuda else "cuda")

    train_data = dataset(args.data,
                         "train",
                         args.image_size,
                         transform=transforms.Compose([ToTensor()]),
                         shuffle=True)
    valid_data = dataset(args.data,
                         "val",
                         args.image_size,
                         transform=transforms.Compose([ToTensor()]))

    trainloader = DataLoader(train_data,
                             batch_size=args.batch_size,
                             shuffle=True,
                             num_workers=8)
    validloader = DataLoader(valid_data,
                             batch_size=args.batch_size_val,
                             shuffle=False,
                             num_workers=8)

    model = Model(args.image_size, args.image_size)

    optimizer = RAdam(model.parameters(), lr=args.lr, weight_decay=1e-8)

    if not args.no_cuda:
        model.cuda()

    if torch.cuda.device_count() > 1 and args.multi_gpu:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

    if args.resume:
        model.load_state_dict(
            torch.load(os.path.join(args.resume, model_save_name)))
        optimizer.load_state_dict(
            torch.load(os.path.join(args.resume, optimizer_save_name)))

    train(model, optimizer, trainloader, validloader, device, args)
Beispiel #2
0
def main():
    parser = argparse.ArgumentParser(description='RAVEN test args')
    parser.add_argument('data', metavar='DIR', help='path to dataset')
    parser.add_argument('--batch-size',
                        type=int,
                        default=100,
                        metavar='N',
                        help='input batch size for training (default: 100)')
    parser.add_argument('--image-size',
                        type=float,
                        default=80,
                        metavar='IMSIZE',
                        help='input image size (default: 80)')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--multi-gpu',
                        action='store_true',
                        default=False,
                        help='parallel training on multiple GPUs')
    parser.add_argument('--valid_result',
                        action='store_true',
                        default=False,
                        help='compute results on validation dataset')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--model-path-name',
                        default='',
                        type=str,
                        metavar='PATH',
                        help='The path+name of model to be loaded')
    args = parser.parse_args()

    torch.set_default_tensor_type('torch.FloatTensor')

    device = torch.device("cpu" if args.no_cuda else "cuda")

    test_data = dataset(args.data,
                        "test",
                        args.image_size,
                        transform=transforms.Compose([ToTensor()]))
    valid_data = dataset(args.data,
                         "val",
                         args.image_size,
                         transform=transforms.Compose([ToTensor()]))

    testloader = DataLoader(test_data,
                            batch_size=args.batch_size,
                            num_workers=8)
    validloader = DataLoader(valid_data,
                             batch_size=args.batch_size,
                             num_workers=8)

    model = Model(args.image_size, args.image_size)

    if not args.no_cuda:
        model.cuda()

    if torch.cuda.device_count() > 1 and args.multi_gpu:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

    model.load_state_dict(torch.load(args.model_path_name))

    test(model, testloader, validloader, device, args)