def create(neo4j: Neo4JConnection):
    neo4j.query("""
        MATCH (ev:Event)
        MATCH (en:Entity {IDraw: ev.IDraw, EntityType:ev.EntityType})
        CREATE (ev)-[r:E_EN]->(en)
        SET r.EntityType = en.EntityType
    """, 'Creating E_EN relations')
Beispiel #2
0
def __cleanup_temp(neo4j: Neo4JConnection):
    neo4j.query(
        """
        MATCH (e:TempEvent)
        OPTIONAL MATCH (e)-[k:Source]->()
        DELETE e, k
        """, 'Cleaning up temp nodes')
def calculate(neo4j: Neo4JConnection, config: Config):

    nodetypes = ["Event", "Common", "Entity", "Log"]
    relationtypes = ["E_C", "DF", "E_EN", "L_E"]
    results = []

    volume = neo4j.query(
        f"""
        MATCH()-[e:{functools.reduce(lambda a,b : f'{a}|{b}', relationtypes)}]->()
        return count(e)
    """, "Calculating Volume")[0][0]

    nr_vertices = neo4j.query(f"""
        MATCH (n)
        WHERE {functools.reduce(lambda a,b : f'n:{a} OR n:{b}', nodetypes)}
        return count(n)
    """)[0][0]

    results.append(["volume", volume, "edges"])
    results.append(["nr_vertices", nr_vertices, "vertices"])
    results.append(["size", volume + nr_vertices, "vertices + edges"])
    results.append(
        ["fill", volume / (nr_vertices * nr_vertices), "edges/vertices^2"])

    csv.write(results, ["Statistic", "Value", "Unit"], "basic")
def create(neo4j: Neo4JConnection):
    neo4j.query(
        """
        CREATE (l:Log {ID: 'BPI14'})
        WITH l
        Match (e:Event)
        CREATE (l)-[r:L_E]->(e)
    """, 'Creating Log node with L_E relations')
Beispiel #5
0
def calculate(neo4j: Neo4JConnection):
    edges = neo4j.query(
        """
        match ()-[n]->() return type(n), count(n)
    """, "calculating counts per edge type")

    csv.write(edges, ["type", "count"], "counts-per-edge-type")

    nodes = neo4j.query(
        """
        match (n) return labels(n), count(n)
    """, "calculating counts per node type")

    csv.write(nodes, ["labels", "count"], "counts-per-node-type")
def create(neo4j: Neo4JConnection):
    neo4j.query(
        """
        MATCH (n:Entity)
        MATCH (n)-[]-(ev)
        
        WITH n, ev as nodes ORDER BY ev.Start, ev.commonID
        WITH n, collect(nodes) as nodeList
        WITH n, apoc.coll.pairsMin(nodeList) as pairs
        UNWIND pairs as pair
        WITH n, pair[0] as first, pair[1] as second
        
        CREATE (first)-[df:DF]->(second)
        SET df.EntityType = n.EntityType
        SET df.EntityId = n.ID
    """, 'Creating DF relations')
Beispiel #7
0
def __create_temp_events(neo4j: Neo4JConnection, entity_config: dict,
                         entities_config: dict):
    event_config = entity_config['event']
    related_entities = event_config[
        'related_entities']  # list of entities that should relate to these events

    # Create temp event nodes for the target entity type
    neo4j.query(__create_temp_events_query(entity_config, entities_config),
                f'Creating temp events for {entity_config["label"]} entities')

    # Create temp event nodes for the entities related to the target entity type
    for related_entity in related_entities:
        neo4j.query(
            __create_temp_events_query(entity_config, entities_config,
                                       related_entity),
            f'Creating temp events for {related_entity} entities related to {entity_config["label"]}'
        )
def __histogram(neo4j: Neo4JConnection, label: str):
    return neo4j.query(
        f"""
                MATCH (n:Entity {{EntityType: '{label}'}})
                OPTIONAL MATCH (n)<-[:E_EN]-(e:Event)
                WITH n, count(e) as nr_events
                unwind [nr_events,0] as path_length
                with n, max(path_length) as path_length
                RETURN path_length, count(n)
            """,
        f"Calculating histogram of lengths of df paths for entities with EntityType: {label}"
    )
Beispiel #9
0
def create_indexes(neo4j_conn: Neo4JConnection):
    neo4j_conn.query("CREATE INDEX ON :Entity(EntityType)",
                     'Creating index on :Entity(EntityType)')
    neo4j_conn.query("CREATE INDEX ON :Event(start)",
                     'Creating index on :Event(start)')
    neo4j_conn.query("CREATE INDEX ON :TempEvent(originID)",
                     'Creating index on :TempEvent(originID)')
Beispiel #10
0
def create(neo4j: Neo4JConnection, config: Config):
    entities = config['entity']
    log_name = config['log']['name']

    for entity in entities:
        label = entity['label']
        id_column = entity["id_column"]

        neo4j.query(
            f"""
            MATCH (n:{label})
            CALL apoc.create.node(
                ['Entity'], 
                {{
                    EntityType:'{label}', 
                    IDLog:'{log_name}' + n.{id_column}, 
                    IDraw: n.{id_column}, 
                    Log:'{log_name}', 
                    uID:'{label}{log_name}'+ n.{id_column}
                }}) yield node
            SET node+=n
        """, f"Creating entity nodes with EntityType:{label}")
Beispiel #11
0
def __create_events(neo4j: Neo4JConnection, create_from: dict,
                    entity_config: dict):
    entity_label = entity_config['label']  # label of the current entity
    start_column = create_from['start_column']
    end_column = start_column  # Set the end column equal to the start column if it is not specified
    activity = start_column  # Set the activity equal to the start column if it is not specified

    if 'end_column' in create_from:
        end_column = create_from['end_column']
    if 'activity' in create_from:
        activity = __form_activity(create_from['activity'])

    neo4j.query(
        f"""
        // Find Incident TempEvents that should generate this event
        MATCH (temp:TempEvent {{EntityType:'{entity_label}'}})-->(source)
        WHERE '{start_column}' in keys(source)
        
        // Find other matching TempEvent
        MATCH (t:TempEvent {{commonID: temp.commonID}})
        WITH temp, source, t
        
        CREATE (event:Event)
        SET event = t
        SET event.Activity = {activity}
        SET event.Start = source.{start_column}
        SET event.End = source.{end_column}
        
        WITH temp, collect(event) as events
        
        CREATE (co:Common)
        
        WITH co, events
        UNWIND events as event
        WITH co, event
        
        // Create relations between events and common nodes
        CREATE (event)-[ec:E_C {{entityType: event.entityType}}]->(co)
    """, f'Creating event nodes for {entity_label}.{start_column}')
def __retrieve_relationship_data(neo4j: Neo4JConnection):
    results = neo4j.query("""
        match (s)-[r]->(t)
        return ID(s) as sourceID, labels(s) as sourceLabels, ID(t) as targetID, labels(t) as targetLabels, type(r) as relationType
    """)

    for result in results:
        result[1] = result[1][0]
        result[3] = result[3][0]

    csv.write(
        results,
        ['source_id', 'source_label', 'target_id', 'target_label', 'rel_type'],
        'relationships')
def __simple(neo4j: Neo4JConnection, label: str):
    return neo4j.query(
        f"""
            MATCH (n:Entity {{EntityType: '{label}'}})
            OPTIONAL MATCH (n)<-[:E_EN]-(e:Event)
            WITH n, count(e) as nr_events
            unwind [nr_events,0] as path_length
            with n, max(path_length) as path_length
            RETURN avg(path_length) as average,
            stdev(path_length) as stdev,
            max(path_length) as max,
            min(path_length) as min
        """,
        f"Calculating lengths of df paths for entities with EntityType: {label}"
    )
def __histogram_query_data(neo4j: Neo4JConnection,
                           nodetype: str,
                           dir: str,
                           entity_label: str = None):
    direction = "in" if dir == "<" else "out"

    match = f'MATCH (u:{nodetype}'
    message = f"Calculating histogram of {direction} degree of {nodetype} nodes"

    if entity_label is not None:
        match += f'{{EntityType: "{entity_label}"}}'
        message += f" with EntityType: {entity_label}"

    match += ')'

    return neo4j.query(
        f"""
                           {match}
                           RETURN apoc.node.degree(u,'{dir}'), count(u)
                       """, message)
def __simple(neo4j: Neo4JConnection,
             nodetype: str,
             dir: str,
             entity_label: str = None):
    direction = "in" if dir == "<" else "out"

    match = f'MATCH (u:{nodetype}'
    message = f"Calculating {direction} degree of {nodetype} nodes"

    if entity_label is not None:
        match += f'{{EntityType: "{entity_label}"}}'
        message += f" with EntityType: {entity_label}"

    match += ')'

    return neo4j.query(
        f"""
                    {match}
                    RETURN avg(apoc.node.degree(u,'{dir}')) as average,
                    stdev(apoc.node.degree(u,'{dir}')) as stdev,
                    max(apoc.node.degree(u,'{dir}')) as max,
                    min(apoc.node.degree(u,'{dir}')) as min
                """, message)