Beispiel #1
0
def load():
    masterpath = database.localpath("awash/counties.csv")
    fipsdb = database.StaticCSVDatabase(masterpath, 'fips')

    dbs = []
    for filepath in glob.glob(database.localpath("groundwater/*.txt")):
        if os.path.basename(filepath) == 'notes.txt':
            continue
        db = database.OrderedVectorDatabase.read_text(
            filepath, os.path.basename(filepath[:-4]), 2010, fipsdb)
        if os.path.basename(filepath[:-4]) == 'aquifer_depth':
            db.set_metainfo(
                database.UniformMetainfo("Depth to groundwater table", "m"))
        if os.path.basename(filepath[:-4]) == 'piezohead0':
            db.set_metainfo(database.UniformMetainfo("piezohead", "m"))
        if os.path.basename(filepath[:-4]) == 'county_area':
            db.set_metainfo(database.UniformMetainfo("county area", "m^2"))
        if os.path.basename(filepath[:-4]) == 'county_elevation':
            db.set_metainfo(database.UniformMetainfo("county elevation", "m"))
        if os.path.basename(filepath[:-4]) == 'drawdown0':
            db.set_metainfo(database.UniformMetainfo("draw down", "m"))
        if os.path.basename(filepath[:-4]) == 'vector_storativity':
            db.set_metainfo(database.UniformMetainfo(" ", "None"))
        dbs.append(db)

    return database.ConcatenatedDatabase(dbs)
Beispiel #2
0
def load():
    crime = database.MatrixCSVDatabase(
        database.localpath('crime/baseline.csv'),
        'county',
        get_varyears=lambda df, var: [2005])
    crime.set_metainfo(
        database.StoredMetainfo.load(database.localpath('crime/fields.fgh')))
    return crime
Beispiel #3
0
    def __init__(self, crop, includeus=True, includecrop=False):
        self.crop = crop
        self.includeus = includeus
        self.includecrop = includecrop

        data = pd.read_csv(localpath("ers/ers.csv"))
        self.data = data[data["crop"] == crop]

        self.link = pd.read_csv(localpath("ers/reglink.csv"))
Beispiel #4
0
def load():
    get_fips = lambda df: np.array(df['NHGISST']) * 100 + np.array(df[
        'NHGISCTY']) / 10
    variable_filter = lambda cols: filter(
        lambda col: 'NHGIS' in col or 'mean' in col or 'sum' in col or col ==
        'STATENAM', cols)

    metainfo = database.StoredMetainfo({
        'NHGISNAM': dict(unit="name"),
        'NHGISST': dict(unit="code"),
        'NHGISCTY': dict(unit="code"),
        'STATENAM': dict(unit="name"),
        'solarsum': dict(unit="W"),
        'solarmean': dict(unit="W/m^2"),
        'windsum': dict(unit="m^3/s"),
        'windmean': dict(unit="m/s"),
        'windpowerm': dict(unit="W"),
        'windpowers': dict(unit="W/m^2")
    })

    db = database.StaticCSVDatabase(
        database.localpath("energy/repotential.csv"), get_fips,
        variable_filter)
    db.set_metainfo(metainfo)
    return db
Beispiel #5
0
def load():
    census = database.MatrixCSVDatabase(
        database.localpath('census/DataSet.csv'),
        'fips',
        get_varyears=lambda df, var: [2000 + int(var[-2:])])
    census.set_metainfo(database.FunctionalMetainfo(get_description, get_unit))
    return census
Beispiel #6
0
def load():
    metainfo = database.StoredMetainfo({'NHGISNAM': dict(unit="name"), 'NHGISST': dict(unit="code"), 'NHGISCTY': dict(unit="code"), 'STATENAM': dict(unit="name"), 'bio1_mean': dict(unit='dC'), 'bio2_mean': dict(unit='dC'), 'bio5_mean': dict(unit='dC'), 'bio6_mean': dict(unit='dC'), 'bio7_mean': dict(unit='dC'), 'bio8_mean': dict(unit='dC'), 'bio9_mean': dict(unit='dC'), 'bio10_mean': dict(unit='dC'), 'bio11_mean': dict(unit='dC'), 'bio12_mean': dict(unit='mm'), 'bio13_mean': dict(unit='mm'), 'bio14_mean': dict(unit='mm'), 'bio16_mean': dict(unit='mm'), 'bio17_mean': dict(unit='mm'), 'bio18_mean': dict(unit='mm'), 'bio19_mean': dict(unit='mm')})
    
    get_fips = lambda df: np.array(df['NHGISST']) * 100 + np.array(df['NHGISCTY']) / 10
    variable_filter = lambda cols: filter(lambda col: 'NHGIS' in col or '_mean' in col or col == 'STATENAM', cols)
    current = database.StaticCSVDatabase(database.localpath("climate/bioclims-current.csv"), get_fips, variable_filter)
    current.set_metainfo(metainfo)

    dbs = [current]
    prefixes = ['current']
    for filepath in glob.glob(database.localpath("climate/bioclims-2050/*.csv")):
        db = database.StaticCSVDatabase(filepath, get_fips, variable_filter, year=2050)
        db.set_metainfo(metainfo)
        dbs.append(db)
        prefixes.append(filepath[filepath.rindex('/')+1:filepath.rindex('/')+3])
        
    return database.CombinedDatabase(dbs, prefixes, '.')
Beispiel #7
0
def load():
    allage = database.StaticCSVDatabase(
        database.localpath('mortality/cmf-1999-2010.txt'),
        'County Code',
        year=2004,
        sep='\t')
    allage.set_metainfo(metainfo.StoredMetainfo(infos))

    byage = database.InterlevedCSVDatabase(
        database.localpath("mortality/cmf-age-1999-2010.txt"),
        'County Code',
        'Age Group',
        2004,
        sep='\t')
    byage.set_metainfo(metainfo.StoredMetainfo(infos))

    return database.CombinedDatabase([allage, byage], ['all', 'age'], '.')
Beispiel #8
0
def load():
    metainfo = database.FunctionalMetainfo(get_description, get_unit)

    x20082012 = database.MatrixCSVDatabase(
        database.localpath("election/2008-2012.csv"), 'FIPS',
        database.variable_filtermap(column2variable_2008), get_varyears_2008,
        get_datarows_2008)
    x20082012.set_metainfo(metainfo)

    x20122016 = database.MatrixCSVDatabase(
        database.localpath(
            "election/US_County_Level_Presidential_Results_12-16.csv"),
        'combined_fips', database.variable_filtermap(column2variable_2016),
        get_varyears_2016, get_datarows_2016)
    x20122016.set_metainfo(metainfo)

    return database.CombinedDatabase([x20082012, x20122016],
                                     ['x20082012', 'x20122016'], '.')
Beispiel #9
0
def load():
    centroid = database.MatrixCSVDatabase(
        database.localpath("acra/centroids.csv"),
        'fips',
        get_varyears=lambda df, var: [None])
    centroid.set_metainfo(
        database.StoredMetainfo.load(database.localpath("acra/fields.fgh")))

    elevation = database.MatrixCSVDatabase(
        database.localpath("acra/elevation.csv"),
        'fips',
        get_varyears=lambda df, var: [None])
    elevation.set_metainfo(
        database.StoredMetainfo.load(database.localpath("acra/fields.fgh")))

    name = database.MatrixCSVDatabase(
        database.localpath("acra/us-county-names.csv"),
        'fips',
        get_varyears=lambda df, var: [None])
    name.set_metainfo(
        database.StoredMetainfo.load(database.localpath("acra/fields.fgh")))

    dbs = [centroid, elevation, name]
    prefixes = ['centroid', 'elevation', 'name']
    return database.CombinedDatabase(dbs, prefixes, '.')
Beispiel #10
0
import database
import re

filepath = database.localpath("USGS/USGS_gw_sw_use.xlsx")


def get_description(variable):
    chunks = variable.split('_')
    if len(chunks) == 1:
        return "unknown"

    source = dict(SW="surface water", GW="groundwater",
                  To="total extractions")[chunks[1]]
    demand = dict(PS="public supply",
                  PT="thermoelectric generation",
                  DO="domestic use",
                  IR="irrigation",
                  IN="industrial use",
                  MI="mining",
                  LI="livestock",
                  TO="total use")[chunks[0]]

    return "%s for %s" % (source, demand)


def get_unit(variable):
    if re.match(r"^[A-Z]{2}_[GSWTo]{2}$", variable):
        return "Mgal/day"
    elif variable == 'TP_TotPop':
        return "1e3 people"
    elif variable == 'YEAR':
Beispiel #11
0
def load():
    filepath = database.localpath("labor/lab_cty_00_05_sum.csv")
    db = database.StaticCSVDatabase(filepath, 'fips', year=2002)
    db.set_metainfo(metainfo.StoredMetainfo.load_csv(database.localpath("labor/info.csv"), 'variable', 'description', 'unit'))
    return db
Beispiel #12
0
def load():
    filepath = database.localpath("ccimpacts/county_damage_mapping_data.csv")
    db = database.StaticCSVDatabase(filepath, 'fips', year=2090)
    db.set_metainfo(metainfo.StoredMetainfo(metas))
    return db